Graph Matching Algorithms for Business Process Model Similarity Search

  • Remco Dijkman
  • Marlon Dumas
  • Luciano García-Bañuelos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5701)

Abstract

We investigate the problem of ranking all process models in a repository according to their similarity with respect to a given process model. We focus specifically on the application of graph matching algorithms to this similarity search problem. Since the corresponding graph matching problem is NP-complete, we seek to find a compromise between computational complexity and quality of the computed ranking. Using a repository of 100 process models, we evaluate four graph matching algorithms, ranging from a greedy one to a relatively exhaustive one. The results show that the mean average precision obtained by a fast greedy algorithm is close to that obtained with the most exhaustive algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.T.: Process equivalence: Comparing two process models based on observed behavior. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and merging, and its application to diatom identification. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 259–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Buckley, C., Voorhees, E.M.: Evaluating evaluation measure stability. In: Proc. of the ACM SIGIR Conference, pp. 33–40 (2000)Google Scholar
  4. 4.
    Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)CrossRefGoogle Scholar
  5. 5.
    Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of business process models: Metrics and evaluation. Working Paper 269, BETA Research School, Eindhoven, The Netherlands (2009)Google Scholar
  6. 6.
    Documentair structuurplan, http://www.model-dsp.nl/ (accessed: Feburary 20, 2009)
  7. 7.
    Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business process models. In: Proc. of APCCM 2007, pp. 71–80 (2007)Google Scholar
  8. 8.
    Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral matchmaking for service retrieval: Application to conversation protocols. Inf. Syst. 33(7-8), 681–698 (2008)CrossRefGoogle Scholar
  9. 9.
    Levenshtein, I.: Binary code capable of correcting deletions, insertions and reversals. Cybernetics and Control Theory 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  10. 10.
    Li, C., Reichert, M.U., Wombacher, A.: On measuring process model similarity based on high-level change operations. Technical Report TR-CTIT-07-89, CTIT, Enschede, The Netherlands (2007)Google Scholar
  11. 11.
    Lu, R., Sadiq, S.K.: On the discovery of preferred work practice through business process variants. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 165–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Madhusudan, T., Zhao, L., Marshall, B.: A case-based reasoning framework for workflow model management. Data Knowl. Eng. 50(1), 87–115 (2004)CrossRefGoogle Scholar
  13. 13.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching algorithm and its application to schema matching. In: Proc. of ICDE 2002, pp. 117–128 (2002)Google Scholar
  14. 14.
    Messmer, B.: Efficient Graph Matching Algorithms for Preprocessed Model Graphs. PhD thesis, University of Bern, Switzerland (1995)Google Scholar
  15. 15.
    Minor, M., Tartakovski, A., Bergmann, R.: Representation and structure-based similarity assessment for agile workflows. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 224–238. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and merging of statecharts specifications. In: Proc. of ICSE 2007, pp. 54–63 (2007)Google Scholar
  17. 17.
    Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for attributed planar graphs and its application to fingerprint classification. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Rosemann, M.: Potential pitfalls of process modeling: part a. Business Process Management Journal 12(2), 249–254 (2006)CrossRefGoogle Scholar
  19. 19.
    van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring similarity between business process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 450–464. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer, Berlin (2007)Google Scholar
  21. 21.
    Wombacher, A.: Evaluation of technical measures for workflow similarity based on a pilot study. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 255–272. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Remco Dijkman
    • 1
  • Marlon Dumas
    • 2
  • Luciano García-Bañuelos
    • 2
    • 3
  1. 1.Eindhoven University of TechnologyThe Netherlands
  2. 2.University of TartuEstonia
  3. 3.Universidad Autonoma de TlaxcalaMexico

Personalised recommendations