Adaptable Path Planning in Regionalized Environments

  • Kai-Florian Richter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5756)


Human path planning relies on several more aspects than only geometric distance between two locations. These additional aspects mostly relate to the complexity of the traveled path. Accordingly, in recent years several cognitively motivated path search algorithms have been developed that try to minimize wayfinding complexity. However, the calculated paths may result in large detours as geometric properties of the network wayfinding occurs in are ignored. Simply adding distance as an additional factor to the cost function is a possible, but insufficient way of dealing with this problem. Instead, taking a global view on an environment by accounting for the heterogeneity of its structure allows for adapting the path search strategy. This heterogeneity can be used to regionalize the environment; each emerging region may require a different strategy for path planning. This paper presents such an approach to regionalized path planning. It argues for the advantages of the chosen approach, develops a measure for calculating wayfinding complexity that accounts for structural and functional aspects of wayfinding, and states a generic algorithm for regionalization. Finally, regionalized path planning is demonstrated in a sample scenario.


Path planning regionalization wayfinding complexity cognitive ergonomics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Montello, D.R.: Navigation. In: Shah, P., Miyake, A. (eds.) Handbook of Visuospatial Thinking, pp. 257–294. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  2. 2.
    Timpf, S., Volta, G.S., Pollock, D.W., Frank, A.U., Egenhofer, M.J.: A conceptual model of wayfinding using multiple levels of abstraction. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 348–367. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  3. 3.
    Timpf, S., Kuhn, W.: Granularity transformations in wayfinding. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 77–88. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Klippel, A.: Wayfinding choremes. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 320–334. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Golledge, R.G.: Path selection and route preference in human navigation: A progress report. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 207–222. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Dalton, R.C.: The secret is to follow your nose — route path selection and angularity. In: Peponis, J., Wineman, J., Bafna, S. (eds.) Proceedings of the Third International Space Syntax Symposium, Ann Arbor, University of Michigan, pp. 47.1–47.14 (2001)Google Scholar
  7. 7.
    Wiener, J.M., Tenbrink, T., Henschel, J., Hölscher, C.: Situated and prospective path planning: Route choice in an urban environment. In: CogSci 2008: 30th Annual Conference of the Cognitive Science Society, Washington, D.C. (2008)Google Scholar
  8. 8.
    Kim, Y.O.: The role of spatial configuration in spatial cognition. In: Peponis, J., Wineman, J., Bafna, S. (eds.) Proceedings of the Third International Space Syntax Symposium, Ann Arbor, University of Michigan, pp. 49.1–49.21 (2001)Google Scholar
  9. 9.
    Butler, D.L., Acquino, A.L., Hissong, A.A., Scott, P.A.: Wayfinding by newcomers in a complex building. Human Factors 35(1), 159–173 (1993)Google Scholar
  10. 10.
    Dogu, U., Erkip, F.: Spatial factors affecting wayfinding and orientation — a case study in a shopping mall. Environment and Behavior 32(6), 731–755 (2000)CrossRefGoogle Scholar
  11. 11.
    Heye, C., Timpf, S.: Factors influencing the physical complexity of routes in public transportation networks. In: Axhausen, K. (ed.) 10th International Conference on Travel Behaviour Research, Lucerne, Switzerland (2003)Google Scholar
  12. 12.
    Weisman, J.: Evaluating architectural legibility: Way-finding in the built environment. Environment and Behaviour 13(2), 189–204 (1981)CrossRefGoogle Scholar
  13. 13.
    Gärling, T., Böök, A., Linberg, E.: Spatial orientation and wayfinding in the designed environment – a conceptual analysis and some suggestions for postoccupancy evaluation. Journal of Architectural and Planning Research 3, 55–64 (1986)Google Scholar
  14. 14.
    Montello, D.R.: Spatial orientation and the angularity of urban routes — a field study. Environment and Behavior 23(1), 47–69 (1991)CrossRefGoogle Scholar
  15. 15.
    Werner, S., Long, P.: Cognition meets Le Corbusier – cognitive principles of architectural design. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS, vol. 2685, pp. 112–126. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Hillier, B., Hanson, J.: The Social Logic of Space. Cambridge University Press, Cambridge (1984)CrossRefGoogle Scholar
  17. 17.
    O’Neill, M.J.: Evaluation of a conceptual model of architectural legibility. Environment and Behaviour 23(3), 259–284 (1991)CrossRefGoogle Scholar
  18. 18.
    Mark, D.: Automated route selection for navigation. IEEE Aerospace and Electronic Systems Magazine 1, 2–5 (1986)CrossRefGoogle Scholar
  19. 19.
    Richter, K.-F., Klippel, A.: A model for context-specific route directions. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS, vol. 3343, pp. 58–78. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Duckham, M., Kulik, L.: ”Simplest” paths: Automated route selection for navigation. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 169–185. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Caduff, D., Timpf, S.: The landmark spider: Representing landmark knowledge for wayfinding tasks. In: Barkowsky, T., Freksa, C., Hegarty, M., Lowe, R. (eds.) Reasoning with mental and external diagrams: computational modeling and spatial assistance - Papers from the 2005 AAAI Spring Symposium, Menlo Park, CA, pp. 30–35. AAAI Press, Menlo Park (2005)Google Scholar
  23. 23.
    Raubal, M., Winter, S.: Enriching wayfinding instructions with local landmarks. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 243–259. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Haque, S., Kulik, L., Klippel, A.: Algorithms for reliable navigation and wayfinding. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2007. LNCS, vol. 4387, pp. 308–326. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Montello, D.R., Frank, A.U.: Modeling directional knowledge and reasoning in environmental space: Testing qualitative metrics. In: Portugali, J. (ed.) The Construction of Cognitive Maps, pp. 321–344. Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar
  26. 26.
    Klippel, A., Montello, D.R.: Linguistic and nonlinguistic turn direction concepts. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 373–389. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Richter, K.-F., Duckham, M.: Simplest instructions: Finding easy-to-describe routes for navigation. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 274–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Richter, K.F.: Context-Specific Route Directions - Generation of Cognitively Motivated Wayfinding Instructions. DisKi 314 / SFB/TR 8 Monographs, vol. 3. IOS Press, Amsterdam (2008)Google Scholar
  29. 29.
    Klippel, A., Tappe, H., Kulik, L., Lee, P.U.: Wayfinding choremes — a language for modeling conceptual route knowledge. Journal of Visual Languages and Computing 16(4), 311–329 (2005)CrossRefGoogle Scholar
  30. 30.
    Richter, K.F.: Properties and performance of cognitively motivated path search algorithms (under revision)Google Scholar
  31. 31.
    Daniel, M.-P., Denis, M.: Spatial descriptions as navigational aids: A cognitive analysis of route directions. Kognitionswissenschaft 7, 45–52 (1998)CrossRefGoogle Scholar
  32. 32.
    Assunção, R.M., Neves, M.C., Câmara, G., Freitas, C.D.C.: Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees. International Journal of Geographical Information Science 20, 797–811 (2006)CrossRefGoogle Scholar
  33. 33.
    Kulik, L.: A geometric theory of vague boundaries based on supervaluation. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 44–59. Springer, Heidelberg (2001)Google Scholar
  34. 34.
    Dale, R., Geldof, S., Prost, J.-P.: Using natural language generation in automatic route description. Journal of Research and Practice in Information Technology 37(1), 89–105 (2005)Google Scholar
  35. 35.
    Wiener, J.M., Mallot, H.A.: ’Fine to coarse’ route planning and navigation in regionalized environments. Spatial Cognition and Computation 3(4), 331–358 (2003)CrossRefGoogle Scholar
  36. 36.
    Schmid, F., Peters, D., Richter, K.-F.: You are not lost - you are somewhere here. In: Klippel, A., Hirtle, S. (eds.) You-Are-Here-Maps: Creating a Sense of Place through Map-like Representations, Workshop at Spatial Cognition (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kai-Florian Richter
    • 1
  1. 1.Transregional Collaborative Research Center SFB/TR 8 Spatial CognitionUniversität BremenGermany

Personalised recommendations