Composing Models of Geographic Physical Processes

  • Barbara Hofer
  • Andrew U. Frank
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5756)


Processes are central for geographic information science; yet geographic information systems (GIS) lack capabilities to represent process related information. A prerequisite to including processes in GIS software is a general method to describe geographic processes independently of application disciplines. This paper presents such a method, namely a process description language. The vocabulary of the process description language is derived formally from mathematical models. Physical processes in geography can be described in two equivalent languages: partial differential equations or partial difference equations, where the latter can be shown graphically and used as a method for application specialists to enter their process models. The vocabulary of the process description language comprises components for describing the general behavior of prototypical geographic physical processes. These process components can be composed by basic models of geographic physical processes, which is shown by means of an example.


geographic physical processes process modeling process language GIS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Partial Differential Equation, Encyclopædia Britannica (retrieved April 18, 2007),
  2. 2.
    Abler, R., Adams, J.S., Gould, P.: Spatial Organization: the Geographer’s View of the World, International edn. (1st edn.) Prentice-Hall International, London (1977)Google Scholar
  3. 3.
    Albrecht, J., Jung, S., Mann, S.: VGIS: a GIS shell for the conceptual design of environmental models. In: Kemp, Z. (ed.) Innovations in GIS 4, pp. 154–165. Taylor & Francis, Bristol (1997)Google Scholar
  4. 4.
    Bivand, R.S., Lucas, A.E.: Integrating Models and Geographical Information Systems. In: Openshaw, S., Abrahart, R.J. (eds.) GeoComputation, pp. 331–363. Taylor & Francis, London (2000)Google Scholar
  5. 5.
    Briggs, D., Smithson, P.: Fundamentals of physical phenomena. Routledge (1993); reprinted 1993 edn. first published 1985 by Hutchinson EducationGoogle Scholar
  6. 6.
    Brown, D.G., Riolo, R., Robinson, D.T., North, M., Rand, W.: Spatial Process and Data Models: Toward Integration of Agent-Based Models and GIS. Journal of Geographical Systems 7(1), 25–47 (2005)CrossRefGoogle Scholar
  7. 7.
    Burrough, P.A., Frank, A.U.: Concepts and Paradigms in Spatial Information: Are Current Geographic Information Systems Truly Generic? International Journal of Geographical Information Systems 9, 101–116 (1995)CrossRefGoogle Scholar
  8. 8.
    Crow, S.: Spatial modeling environments: Integration of GIS and conceptual modeling frameworks. In: 4th International Conference on Integrating GIS and Environmental Modeling (GIS/EM4): Problems, Prospects, and Research Needs, Banff, Alberta, Canada, pp. 1–11 (2000)Google Scholar
  9. 9.
    Frank, A.U.: Material vs. information causation - An ontological clarification for the information society. In: Wittgenstein Syposium, Kirchberg, Austria, pp. 5–11 (2007)Google Scholar
  10. 10.
    Frank, A.U.: Tiers of ontology and consistency constraints in geographic information systems. International Journal of Geographical Information Science (IJGIS) 75(5 ), 667–678 (2001)CrossRefGoogle Scholar
  11. 11.
    Getis, A., Boots, B.: Models of Spatial Processes - An approach to the study of point, line and area patterns. Cambridge Geographical Studies. Cambridge University Press, Cambridge (1978)zbMATHGoogle Scholar
  12. 12.
    Goodchild, M.F.: A Geographer Looks at Spatial Information Theory. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 1–13. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Hayes, P.J.: The Second Naive Physics Manifesto. In: Hobbs, J.R., Moore, R.C. (eds.) Formal Theories of the Commonsense World. Ablex Series in Artificial Intelligence, pp. 1–36. Ablex Publishing Corp, Norwood (1985)Google Scholar
  14. 14.
    Hofer, B., Frank, A.U.: Towards a Method to Generally Describe Physical Spatial Processes. In: Ruas, A., Gold, C. (eds.) Headway in Spatial Data Handling, Spatial Data Handling 2008, Montpellier France. LNG&C, p. 217 (2008) ISBN: 978-3-540-68565-4Google Scholar
  15. 15.
    Hofierka, J., Mitasova, H., Mitas, L.: GRASS and modeling landscape processes using duality between particles and fields. In: Ciolli, M., Zatelli, P. (eds.) Proceedings of the Open Source GIS - GRASS users conference, Trento, Italy, September 11-13 (2002)Google Scholar
  16. 16.
    Holzbecher, E.: Environmental Modeling Using MATLAB. In: Zannetti, P. (ed.) Environmental Modeling. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Hornsby, K., Egenhofer, M.J.: Qualitative Representation of Change. In: Hirtle, S.C., Frank, A.U. (eds.) COSIT 1997. LNCS, vol. 1329, pp. 15–33. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Huggett, R.J.: Modelling the human impact on nature: systems analysis of environmental problems, p. 202. Oxford University Press, Oxford (1993)Google Scholar
  19. 19.
    Kavouras, M.: Understanding and Modelling Spatial Change. In: Frank, A.U., Raper, J., Cheylan, J.P. (eds.) Life and Motion of Socio-Economic Units, ch. 4. GISDATA Series, vol. 8, pp. 49–61. Taylor & Francis, Abington (2001)Google Scholar
  20. 20.
    Langran, G., Chrisman, N.: A Framework for Temporal Geographic Information. Cartographica 25(3), 1–14 (1988)CrossRefGoogle Scholar
  21. 21.
    Logan, J.D.: Applied Partial Differential Equations, 2nd edn. Undergraduate Texts in Mathematics. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    Maxwell, T., Constanza, R.: A language for modular spatio-temporal simulation. Ecological Modelling 103, 105–113 (1997)CrossRefGoogle Scholar
  23. 23.
    Mazzoleni, S., Giannino, F., Mulligan, M., Heathfield, D., Colandrea, M., Nicolazzo, M., Aquino, M.D.: A new raster-based spatial modelling system: 5D environment. In: Voinov, A., Jakeman, A., Rizzoli, A. (eds.) Proceedings of the iEMSs Third Biennial Meeting: Summit on Environmental Modelling and Software, Burlington, USA (2006)Google Scholar
  24. 24.
    Mitasova, H., Mitas, L.: Modeling Physical Systems. In: Clarke, K., Parks, B., Crane, M. (eds.) Geographic Information Systems and Environmental Modeling. Prentice Hall series in geographic information science, pp. 189–210. Prentice Hall, Upper Saddle River (2002)Google Scholar
  25. 25.
    Muetzelfeldt, R., Massheder, J.: The Simile visual modelling environment. European Journal of Agronomy 18, 345–358 (2003)CrossRefGoogle Scholar
  26. 26.
    Pullar, D.: A Modelling Framework Incorporating a Map Algebra Programming Language. In: Rizzoli, A., Jakeman, A.R. (ed.) International Environmental Modelling and Software Society Conference, vol. 3 (2002)Google Scholar
  27. 27.
    Raper, J., Livingstone, D.: Development of a Geomorphological Spatial Model Using Object-Oriented Design. International Journal of Geographical Information Systems 9(4), 359–383 (1995)CrossRefGoogle Scholar
  28. 28.
    Reitsma, F.: A New Geographic Process Data Model. Ph.D. thesis, Faculty of the Graduate School of the University of Maryland (2004)Google Scholar
  29. 29.
    Reitsma, F., Albrecht, J.: Implementing a new data model for simulation processes. International Journal of Geographical Information Science (IJGIS) 19(10), 1073–1090 (2005)CrossRefGoogle Scholar
  30. 30.
    Sui, D., Maggio, R.: Integrating GIS with Hydrological Modeling: Practices, Problems, and Prospects. Computers, Environment and Urban Systems 23, 33–51 (1999)CrossRefGoogle Scholar
  31. 31.
    Sukop, M.: Transient Ground Water Flow (2009),
  32. 32.
    Thomas, R.W., Huggett, R.J.: Modelling in Geography - A Mathematical Approach, 1st edn. Harper & Row, London (1980)Google Scholar
  33. 33.
    Van Deursen, W.P.A.: Geographical Information Systens and Dynamic Models. Phd-thesis, University of Utrecht, NGS Publication 190 (1995)Google Scholar
  34. 34.
    Wang, X., Pullar, D.: Describing dynamic modeling for landscapes with vector map algebra in GIS. Computers & Geosciences 31, 956–967 (2005)CrossRefGoogle Scholar
  35. 35.
    Worboys, M.F.: Event-oriented approaches to geographic phenomena. International Journal of Geographical Information Science (IJGIS) 19(1), 1–28 (2005)CrossRefGoogle Scholar
  36. 36.
    Yuan, M.: Representing complex geographic phenomena in GIS. Cartography and Geographic Information Science 28(2), 83–96 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Barbara Hofer
    • 1
  • Andrew U. Frank
    • 1
  1. 1.Department of Geoinformation and CartographyVienna University of TechnologyViennaAustria

Personalised recommendations