Molecular Aspects in Allergic and Irritant Contact Dermatitis

  • Jean-Pierre LepoittevinEmail author


Skin exposure to chemicals, natural or synthetic, may result in toxic reactions ranging from mild irritation to cutaneous allergy. These inflammatory reactions, subsequent to chemical exposure, derive from very different biological mechanisms. For a chemical to be a sensitizer, it must have the ability to bind to protein so that a nonself antigen can be produced. The evidence indicates that normally this binding occurs by covalent bond formation. From a chemical point of view, chemical sensitizers can be divided into three categories: Haptens that can react directly with nucleophilic side chains of aminoacids. Prohaptens that need an enzymatic transformation to become reactive haptens. Prehaptens that need a nonenzymatic chemical transformation such as air oxidation to become reactive haptens. Molecular mechanisms associated with irritant contact dermatitis are more difficult to investigate and demonstrate as they are very often based on reversible interactions with biological systems. However, one can mention acido-basic, surfactant, and alkylating properties.


Contact Dermatitis Coordination Bond Allergic Contact Dermatitis Skin Sensitization Abietic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baer H, Watkins RC, Kurtz AP, Byck JS, Dawson CR (1967) Delayed contact sensitivity to catechols. J Immunol 99:307–375Google Scholar
  2. 2.
    Corbett MD, Billets S (1975) Characterization of poison oak urushiol. J Pharm Sci 64:1715PubMedCrossRefGoogle Scholar
  3. 3.
    Landsteiner K, Jacobs J (1936) Studies on the sensitization of animals with simple chemical compounds. J Exp Med 64:625–639PubMedCrossRefGoogle Scholar
  4. 4.
    Lepoittevin JP, Berl V (1997) Chemical basis. In: Lepoittevin JP, Basketter DA, Goossens A, Karlberg AT (eds) Allergic contact dermatitis: the molecular basis. Springer, Berlin, pp 19–42Google Scholar
  5. 5.
    Lepoittevin J-P, Benezra C (1992) 13C-Enriched methylalkanesulfonates: new lipophilic methylating agents for the identification of nucleophilic amino acids of protein by NMR. Tetrahedron Lett 33:3875–3878CrossRefGoogle Scholar
  6. 6.
    Franot C, Benezra C, Lepoittevin J-P (1993) Synthesis and interaction studies of 13C labeled lactone derivatives with a model protein using 13C NMR. Biorg Med Chem 1: 389–397CrossRefGoogle Scholar
  7. 7.
    Ritz HL, Connor DS, Sauter ED (1975) Contact sensitization of guinea-pigs with unsaturated and halogenated sultones. Contact Derm 1:349–358PubMedCrossRefGoogle Scholar
  8. 8.
    Goodwin BFJ, Roberts DW, Williams DL, Johnson AW (1983) Relationships between skin sensitization potential of saturated and unsaturated sultones. In: Gibson GG, Hubbard R, Parke DV (eds) Immunotoxicology. Academic Press, London, pp 443–448Google Scholar
  9. 9.
    Magnusson B, Gilje O (1973) Allergic contact dermatitis from dishwashing liquid containing lauryl ether sulfate. Acta Derm Venereol (Stockholm) 53:136–140Google Scholar
  10. 10.
    Meschkat E, Barratt M, Lepoittevin JP (2001) Studies of chemical selectivity of hapten, reactivity and skin sensitization potency. Synthesis and studies on the reactivity towards model nucleophiles of the 13C-labeled skin sensitizers, hex-1-ene- and hexane-1,3 sultones. Chem Res Toxicol 14: 110–117PubMedCrossRefGoogle Scholar
  11. 11.
    Meschkat E, Barratt M, Lepoittevin JP (2001) Studies of chemical selectivity of hapten, reactivity and skin sensitization potency. NMR studies of the covalent binding of the 13C-labeled skin sensitizers, 2-[13C] and 3-[13C]-hex-1-ene- and 3-[13C]-hexane-1,3-sultones to human serum albumin. Chem Res Toxicol 14:118–126PubMedCrossRefGoogle Scholar
  12. 12.
    Alvarez-Sanchez R, Basketter D, Pease C, Lepoittevin JP (2003) Studies of chemical selectivity of hapten, reactivity and skin sensitization potency. 3. Synthesis and studies on the reactivity towards model nucleophiles of the 13C-labeled skin sensitizers, 5-chloro-2-methylisothiazol-3-one (MCI) and 2-methylisothiazol-3-one (MI). Chem Res Toxicol 16:627–636PubMedCrossRefGoogle Scholar
  13. 13.
    Alvarez-Sanchez R, Basketter DA, Pease C, Lepoittevin JP (2004) Covalent binding of the 13C-labeled skin sensitizers 5-chloro-2-methylisothiazol-3-one (MCI) and 2-methylisothiazol-3-one (MI) to a model peptide and glutathione. Bioorg Med Chem Letters 14:365–368CrossRefGoogle Scholar
  14. 14.
    Alvarez-Sanchez R, Divkovic M, Basketter D, Pease C, Panico M, Dell A, Morris H, Lepoittevin JP (2004) Effect of glutathione on the covalent binding of the 13C-labeled skin sensitizer 5-chloro-2-methylisothiazol-3-one (MCI) to human serum albumin: identification of adducts by NMR, MALDI-MS and nano-ES MS/MS. Chem Res Toxicol 17(9):1280–1288Google Scholar
  15. 15.
    Romagnoli P, Labahrdt AM, Sinigaglia F (1991) Selective interaction of nickel with an MHC bound peptide. EMBO J 10:1303–1306PubMedGoogle Scholar
  16. 16.
    Schmidt R, Kahn L, Chung LY (1990) Are free radicals and quinones the haptenic species derived from urushiols and other contact allergenic mono- and dihydric alkylbenzenes? The significance of NADH, glutathione and redox cuycling in the skin. Arch Dermatol Res 282:56–64PubMedCrossRefGoogle Scholar
  17. 17.
    Barratt MD, Basketter DA (1992) Possible origin of the skin sensitization potential of eugenol and related compounds. Contact Derm 27:98–104PubMedCrossRefGoogle Scholar
  18. 18.
    Gäfvert E, Shao LP, Karlberg A-T, Nilsson U, Nilsson JLG (1994) Contact allergy to resin acid hydroperoxides. Hapten binding via free readicals and epoxides. Chem Res Toxicol 7:260–266PubMedCrossRefGoogle Scholar
  19. 19.
    Mutterer V, Gimenez-Arnau E, Karlberg AT, Lepoittevin JP (2000) Synthesis and allergenic potential of a 15-hydroperoxyabietic acid-like model: trapping of radical intermediates. Chem Res Toxicol 13:1028–1036CrossRefGoogle Scholar
  20. 20.
    Giménez-Arnau E, Haberkorn L, Grossi L, Lepoittevin JP (2002) Identification of alkyl radicals derived from an allergenic cyclic tertiary allylic hydroperoxide by combined use of radical trapping and ESR studies. Tetrahedron 58:5535–5545Google Scholar
  21. 21.
    Bertrand F, Basketter DA, Roberts DW, Lepoittevin J-P (1997) Skin sensitization to eugenol and isoeugenol in mice: possible metabolic pathways involving ortho-quinone and quinone methide intermediates. Chem Res Toxicol 10: 335–343PubMedCrossRefGoogle Scholar
  22. 22.
    Merk HF (1997) Skin metabolism. In: Lepoittevin JP, Basketter DA, Goossens A, Karlberg AT (eds) Allergic contact dermatitis: the molecular basis. Springer, Berlin, pp 68–80Google Scholar
  23. 23.
    Dupuis G (1979) Studies of poison ivy. In vitro lymphocytes transformation by urushiol protein conjugates Brit J Dermatol 101:617–624Google Scholar
  24. 24.
    Reynolds G, Rodriguez E (1981) Prenylated hydroquinones: contact allergens from trichomes of Phacelia minor and P. parryi. Phytochemistry 20:1365–1366CrossRefGoogle Scholar
  25. 25.
    Bergmann HH, Beijersbergen JCH, Overeem JC, Sijpesteijn AK (1967) Isolation and identification of α-methylene-γ-butyrolactone: a fungitoxic substance from tulips. Recueil des Travaux Chimiques des Pays-Bas 86:709–713CrossRefGoogle Scholar
  26. 26.
    Landsteiner K, Jacobs JL (1936) Studies on the sensitization of animals with simple chemicals. J Exp Med 64:625–639PubMedCrossRefGoogle Scholar
  27. 27.
    Dupuis G, Benezra C (1982) Allergic contact dermatitis to simple chemicals. Marcel Dekker, New YorkGoogle Scholar
  28. 28.
    Hellerström S, Thyresson N, Blohm SG, Widmark G (1955) On the nature of eczematogenic component of oxidized Δ3-carene. J Invest Dermatol 24:217–224PubMedCrossRefGoogle Scholar
  29. 29.
    Karlberg AT (1988) Contact allergy to colophony. Chemical identification of allergens. Sensitization experiments and clinical experiments. Acta Dermato-Venereol 68(suppl 139):1–43Google Scholar
  30. 30.
    Karlberg AT, Shao LP, Nilsson U, Gäfvert E, Nilsson JLG (1994) Hydroperoxides in oxidized d-limonene identified as potent contact allergens. Arch Dermatol Res 286:97–103PubMedCrossRefGoogle Scholar
  31. 31.
    Stampf JL, Benezra C, Klecak G, Geleick H, Schulz KH, Hausen B (1982) The sensitization capacity of helenin and two of its main constituents, the sesquiterpene lactones, alantolactones and isoalantolactone. Contact Derm 8:16–24PubMedCrossRefGoogle Scholar
  32. 32.
    Baer RL (1954) Cross-sensitization phenomena. In: Mackenna (ed). Modern trends in dermatology. Butterworth, London, pp 232–258Google Scholar
  33. 33.
    Benezra C, Maibach H (1984) True cross-sensitization, false cross-sensitization and otherwise. Contact Derm 11:65–69PubMedCrossRefGoogle Scholar
  34. 34.
    Cohen NC, Blaney JM, Humblet C, Gund P, Barry DC (1990) Molecular modeling software and methods for medicinal chemistry. J Med Chem 33:883–984PubMedCrossRefGoogle Scholar
  35. 35.
    Coopman S, Degreef H, Dooms-Goossens A (1989) Identification of cross-reaction patterns in allergic contact dermatitis from topical corticosteroids. Brit J Dermatol 121:27–34CrossRefGoogle Scholar
  36. 36.
    Lepoittevin JP, Drieghe J, Dooms-Goossens A (1995) Studies in patients with corticosteroid contact allergy: understanding cross-reactivity among different steroids. Arch Dermatol 131:31–37PubMedCrossRefGoogle Scholar
  37. 37.
    Roberts DW, Williams DL (1982) The derivation of quantitative correlations between skin sensitisation and physico-chemical parameters for alkylating agents and their application to experimental data for sultones. J Theor Biol 99:807–825PubMedCrossRefGoogle Scholar
  38. 38.
    Fraginals R, Roberts DW, Lepoittevin J-P, Benezra C (1991) Refinement of the relative alkylation index (RAI) model for skin sensitization and application to mouse and guinea-pig test data for alkylsulfonates. Arch Dermatol Res 283:387–394PubMedCrossRefGoogle Scholar
  39. 39.
    Franot C, Roberts DW, Basketter DA, Benezra C, Lepoittevin J-P (1994) Structure-activity relationships for contact allergenic potential of γ, γ-dimethyl-γ-butyrolactone derivatives Part II. Chem Res Toxicol 7:307–312PubMedCrossRefGoogle Scholar
  40. 40.
    Roberts DW, Basketter DA (1997) Further evaluation of the quantitative structure-activity relationship for skin-sensitizing alkyl transfer agents. Contact Derm 37:107–112PubMedCrossRefGoogle Scholar
  41. 41.
    Roberts DW, Basketter DA (2000) Quantitative structure-activity relationships: sulfonate esters in the local lymph node assay. Contact Derm 42:154–161PubMedCrossRefGoogle Scholar
  42. 42.
    Basketter DA, Gerberick GF, Kimber I, Loveless SE (1996) The local lymph node assay: a viable alternative to currently accepted skin sensitization tests. Food Chem Toxicol 34: 985–997PubMedCrossRefGoogle Scholar
  43. 43.
    Basketter DA, Lea LJ, Dickens A et al (1999) A comparison of statistical approaches to the derivation of EC3 values from local lymph node assay dose-response. J Appl Toxicol 19:261–266PubMedCrossRefGoogle Scholar
  44. 44.
    Perrin DD, Dempsey B, Serjeant EP (1981) pKa prediction for organic acids and bases. Chapman and Hall, London, pp 109–126Google Scholar
  45. 45.
    Patlewicz GY, Wright ZM, Basketter DA, Pease CK, Lepoittevin JP, Gimenez-Arnau E (2002) Structure-activity relationships for selected fragrance allergens. Contact Derm 47:219–226PubMedCrossRefGoogle Scholar
  46. 46.
    Barbier A, Rizova E, Stampf J-L, Lacheretz F, Pistor FHM, Bos JD, Kapsenberg ML, Becker D, Mohamadzadeh M, Knop J, Mabic S, Lepoittevin J-P (1994) Development of a predictive in vitro test for detection of sensitizing compounds (European BRIDGE project). In: Rougier A, Goldberg AM, Maibach HI (eds) In vitro skin toxicology (irritation, phototoxicity, sensitization). Liebert, New York, pp 341–350Google Scholar
  47. 47.
    Gerberick F, Vassallo J, Bailey R, Morrall S, Lepoittevin J-P (2004) Development of peptide reactivity assay for screening allergens. Toxicol Sci 81:332–343PubMedCrossRefGoogle Scholar
  48. 48.
    Gerberick F, Vassallo J, Foertsch L, Price B, Chaney J, Lepoittevin J-P (2007) Quantification of chemical peptide reactivity for screening contact allergens. Toxicol Sci 97: 417–427PubMedCrossRefGoogle Scholar
  49. 49.
    Levin CY, Maibach HI (2008) Animal, human, and in vitro test methods for predicting skin irritation. In: Zhai H, Maibach HI (eds) Dermatotoxicology, 7th edn. CRC press, Boca Raton, pp 383–389Google Scholar
  50. 50.
    Kang KW, Lee SJ, Kim SG (2005) Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal 7(11–12):1664–1673PubMedCrossRefGoogle Scholar
  51. 51.
    Natsch A, Emter R (2008) Skin sensitizers induce antioxidant response element dependent genes: Application to the In Vitro testing of the sensitization potential of chemicals.Toxicol Sci 102:110–119Google Scholar

Classical References

  1. Lepoittevin JP, Basketter DA, Goossens A, Karlberg AT (eds) (1997) Allergic contact dermatitis: the molecular basis. Springer, BerlinGoogle Scholar
  2. Dupuis G, Benezra C (1982) Allergic contact dermatitis to simple chemicals. Marcel Dekker, New YorkGoogle Scholar
  3. Smith CK, Hotchkiss SAM (2001) Allergic contact dermatitis: chemical and metabolic mechanisms. Taylor & Francis, London, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institut le Bel, Labo. DermatochimieStrasbourg CedexFrance

Personalised recommendations