Advertisement

On the Hybrid Extension of CTL and CTL + 

  • Ahmet Kara
  • Volker Weber
  • Martin Lange
  • Thomas Schwentick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5734)

Abstract

The paper studies the expressivity, relative succinctness and complexity of satisfiability for hybrid extensions of the branching-time logics CTL and CTL +  by variables. Previous complexity results show that only fragments with one variable do have elementary complexity. It is shown that H1CTL +  and H1CTL, the hybrid extensions with one variable of CTL +  and CTL, respectively, are expressively equivalent but H1CTL +  is exponentially more succinct than H1CTL. On the other hand, HCTL + , the hybrid extension of CTL with arbitrarily many variables does not capture CTL ⋆ , as it even cannot express the simple CTL ⋆  property EGF p . The satisfiability problem for H1CTL +  is complete for triply exponential time, this remains true for quite weak fragments and quite strong extensions of the logic.

Keywords

Model Check Temporal Logic Winning Strategy State Formula Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid temporal logics. Logic Journal of the IGPL 8(5), 653–679 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Areces, C., Blackburn, P., Marx, M.: Hybrid logics: Characterization, interpolation and complexity. J. of Symbolic Logic 66(3), 977–1010 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Areces, C., ten Cate, B.: Hybrid logics. In: Handbook of Modal Logic. Studies in Logic, vol. 3, pp. 821–868. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  4. 4.
    Chlebus, B.S.: Domino-tiling games. J. Comput. Syst. Sci. 32(3), 374–392 (1986)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  6. 6.
    Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic of branching time. In: STOC 1982, pp. 169–180. ACM, New York (1982)Google Scholar
  7. 7.
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Engelfriet, J., Hoogeboom, H.J.: Tree-walking pebble automata. In: Jewels are Forever, pp. 72–83. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Franceschet, M., de Rijke, M., Schlingloff, B.-H.: Hybrid logics on linear structures: Expressivity and complexity. In: TIME-ICTL 2003, pp. 192–202. IEEE, Los Alamitos (2003)Google Scholar
  10. 10.
    Goranko, V.: Temporal logics with reference pointers and computation tree logics. Journal of Applied Non-Classical Logics 10(3-4) (2000)Google Scholar
  11. 11.
    Grohe, M., Schweikardt, N.: The succinctness of first-order logic on linear orders. Logical Methods in Computer Science 1(1) (2005)Google Scholar
  12. 12.
    Jurdziński, M., Lazić, R.: Alternation-free mu-calculus for data trees. In: Proc. of the 22nd LICS 2007. IEEE, Los Alamitos (2007)Google Scholar
  13. 13.
    Kara, A., Weber, V., Lange, M., Schwentick, T.: On the hybrid extension of CTL and CTL + . arXiv:0906.2541 [cs.LO]Google Scholar
  14. 14.
    Kupferman, O., Pnueli, A.: Once and for all. In: Proc. of the 10th LICS 1995, pp. 25–35. IEEE, Los Alamitos (1995)Google Scholar
  15. 15.
    Kupferman, O., Vardi, M.Y.: Memoryful branching-time logic. In: Proc. of the 21st LICS 2006, pp. 265–274. IEEE, Los Alamitos (2006)Google Scholar
  16. 16.
    Lange, M.: A purely model-theoretic proof of the exponential succinctness gap between CTL +  and CTL. Information Processing Letters 108, 308–312 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Laroussinie, F., Schnoebelen, P.: A hierarchy of temporal logics with past. Theor. Comput. Sci. 148(2), 303–324 (1995)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Laroussinie, F., Schnoebelen, P.: Specification in CTL+Past for verification in CTL. Inf. Comput. 156(1-2), 236–263 (2000)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)CrossRefMATHGoogle Scholar
  20. 20.
    Sattler, U., Vardi, M.Y.: The hybrid μ-calculus. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, p. 76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Schwentick, T., Weber, V.: Bounded-variable fragments of hybrid logics. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 561–572. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    ten Cate, B., Segoufin, L.: XPath, transitive closure logic, and nested tree walking automata. In: Proc. of the 27th PODS 2008, pp. 251–260. ACM, New York (2008)Google Scholar
  23. 23.
    Vardi, M.Y.: From church and prior to PSL. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 150–171. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Weber, V.: Hybrid branching-time logics. CoRR, abs/0708.1723 (2007)Google Scholar
  25. 25.
    Weber, V.: Branching-time logics repeatedly referring to states. Accepted to JoLLI (2009); An extended abstract appeared in the proceedings of HyLo 2007Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ahmet Kara
    • 1
  • Volker Weber
    • 1
  • Martin Lange
    • 2
  • Thomas Schwentick
    • 1
  1. 1.Technische Universität DortmundGermany
  2. 2.Ludwig-Maximilians-Universität MünchenGermany

Personalised recommendations