Constructing Brambles

  • Mathieu Chapelle
  • Frédéric Mazoit
  • Ioan Todinca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5734)

Abstract

Given an arbitrary graph G and a number k, it is well-known by a result of Seymour and Thomas [22] that G has treewidth strictly larger than k if and only if it has a bramble of order k + 2. Brambles are used in combinatorics as certificates proving that the treewidth of a graph is large. From an algorithmic point of view there are several algorithms computing tree-decompositions of G of width at most k, if such decompositions exist and the running time is polynomial for constant k. Nevertheless, when the treewidth of the input graph is larger than k, to our knowledge there is no algorithm constructing a bramble of order k + 2. We give here such an algorithm, running in \({\mathcal O}(n^{k+4})\) time. For classes of graphs with polynomial number of minimal separators, we define a notion of compact brambles and show how to compute compact brambles of order k + 2 in polynomial time, not depending on k.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amini, O., Mazoit, F., Thomassé, S., Nisse, N.: Partition Submodular Functions. To appear in Disc. Math. (2008), http://www.lirmm.fr/~thomasse/liste/partsub.pdf
  2. 2.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of Finding Embeddings in a k-Tree. SIAM J. on Algebraic and Discrete Methods 8, 277–284 (1987)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bachoore, E.H., Bodlaender, H.L.: New Upper Bound Heuristics for Treewidth. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 216–227. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bellenbaum, P., Diestel, R.: Two Short Proofs Concerning Tree-Decompositions. Combinatorics, Probability & Computing 11(6) (2002)Google Scholar
  5. 5.
    Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM J. Comput. 25, 1305–1317 (1996)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bodlaender, H.L.: A Partial k-Arboretum of Graphs with Bounded Treewidth. Theor. Comput. Sci. 209(1-2), 1–45 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bodlaender, H.L., Grigoriev, A., Koster, A.M.C.A.: Treewidth Lower Bounds with Brambles. Algorithmica 51(1), 81–98 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bodlaender, H.L., Koster, A.M.C.A.: On the Maximum Cardinality Search Lower Bound for Treewidth. Disc. App. Math. 155(11), 1348–1372 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bodlaender, H.L., Wolle, T., Koster, A.M.C.A.: Contraction and Treewidth Lower Bounds. J. Graph Algorithms Appl. 10(1), 5–49 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bouchitté, V., Todinca, I.: Treewidth and Minimum Fill-in: Grouping the Minimal Separators. SIAM J. Comput. 31(1), 212–232 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bouchitté, V., Todinca, I.: Listing All Potential Maximal Cliques of a Graph. Theor. Comput. Sci. 276(1-2), 17–32 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chapelle, M., Mazoit, F., Todinca, I.: Constructing Brambles. Technical Report, LIFO, Université d’Orléans (2009)Google Scholar
  13. 13.
    Clautiaux, F., Carlier, J., Moukrim, A., Nègre, S.: New Lower and Upper Bounds for Graph Treewidth. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, pp. 70–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Fomin, F.V., Fraigniaud, P., Nisse, N.: Nondeterministic Graph Searching: From Pathwidth to Treewidth. Algorithmica 53(3), 358–373 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact Algorithms for Treewidth and Minimum Fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Fomin, F.V., Thilikos, D.M.: An Annotated Bibliography on Guaranteed Graph Searching. Theor. Comput. Sci. 399(3), 236–245 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Grohe, M., Marx, D.: On Tree Width, Bramble Size, and Expansion. J. Comb. Theory, Ser. B 99(1), 218–228 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lyaudet, L., Mazoit, F., Thomassé, S.: Partitions Versus Sets: A Case of Duality (submitted 2009), http://www.lirmm.fr/~thomasse/liste/dualite.pdf
  19. 19.
    Mazoit, F.: Décompositions Algorithmiques des Graphes. PhD thesis, École Normale Supérieure de Lyon (2004) (in French)Google Scholar
  20. 20.
    Mazoit, F.: The Branch-width of Circular-Arc Graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 727–736. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Robertson, N., Seymour, P.D.: Graph Minors X. Obstructions to Tree Decompositions. J. Comb. Theory, Ser. B 52, 153–190 (1991)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Seymour, P.D., Thomas, R.: Graph Searching and a Min-Max Theorem for Tree-Width. J. Comb. Theory, Ser. B 58(1), 22–33 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mathieu Chapelle
    • 1
  • Frédéric Mazoit
    • 2
  • Ioan Todinca
    • 1
  1. 1.LIFOUniversité d’OrléansOrléans Cedex 2France
  2. 2.LaBRIUniversité de BordeauxTalence CedexFrance

Personalised recommendations