Quantitative Assessment of Image Segmentation Quality by Random Walk Relaxation Times

  • Björn Andres
  • Ullrich Köthe
  • Andreea Bonea
  • Boaz Nadler
  • Fred A. Hamprecht
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5748)

Abstract

The purpose of image segmentation is to partition the pixel grid of an image into connected components termed segments such that (i) each segment is homogenous and (ii) for any pair of adjacent segments, their union is not homogenous. (If it were homogenous the segments should be merged). We propose a rigorous definition of segment homogeneity which is scale-free and adaptive to the geometry of segments. We motivate this definition using random walk theory and show how segment homogeneity facilitates the quantification of violations of the conditions (i) and (ii) which are referred to as under-segmentation and over-segmentation, respectively. We describe the theoretical foundations of our approach and present a proof of concept on a few natural images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. PNAS 102(21), 7426–7431 (2005)CrossRefGoogle Scholar
  2. 2.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  3. 3.
    Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)MATHGoogle Scholar
  4. 4.
    Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence 28, 1768–1783 (2006)CrossRefGoogle Scholar
  5. 5.
    Grady, L., Sinop, A.K.: A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: ICCV. IEEE, Los Alamitos (2007)Google Scholar
  6. 6.
    Grady, L., Sinop, A.K.: Fast approximate random walker segmentation using eigenvector precomputation. In: CVPR, IEEE, Los Alamitos (2008)Google Scholar
  7. 7.
    MacCluer, C.R.: The many proofs and applications of Perron’s theorem. SIAM Rev. 42(3), 487–498 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, vol. 2, pp. 416–423 (2001)Google Scholar
  9. 9.
    Meila, M., Shi, J.: Learning segmentation by random walks. In: NIPS, pp. 873–879. MIT Press, Cambridge (2000)Google Scholar
  10. 10.
    Nadler, B., Lafon, S., Kevrekidis, I., Coifman, R.: Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators. In: NIPS, pp. 955–962. MIT Press, Cambridge (2005)Google Scholar
  11. 11.
    Roerdink, J., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41(1-2), 187–228 (2000)MathSciNetMATHGoogle Scholar
  12. 12.
    Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)MATHGoogle Scholar
  13. 13.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  14. 14.
    Singer, A., Shkolnisky, Y., Nadler, B.: Diffusion interpretation of non-local neighborhood filters for signal denoising. SIAM J. on Imaging Sciences 2, 118–139 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Björn Andres
    • 1
  • Ullrich Köthe
    • 1
  • Andreea Bonea
    • 1
  • Boaz Nadler
    • 2
  • Fred A. Hamprecht
    • 1
  1. 1.University of HeidelbergGermany
  2. 2.Weizmann Institute of ScienceIsrael

Personalised recommendations