Total Variation Processing of Images with Poisson Statistics

  • Alex Sawatzky
  • Christoph Brune
  • Jahn Müller
  • Martin Burger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5702)


This paper deals with denoising of density images with bad Poisson statistics (low count rates), where the reconstruction of the major structures seems the only reasonable task. Obtaining the structures with sharp edges can also be a prerequisite for further processing, e.g. segmentation of objects.

A variety of approaches exists in the case of Gaussian noise, but only a few in the Poisson case. We propose some total variation (TV) based regularization techniques adapted to the case of Poisson data, which we derive from approximations of logarithmic a-posteriori probabilities. In order to guarantee sharp edges we avoid the smoothing of the total variation and use a dual approach for the numerical solution. We illustrate and test the feasibility of our approaches for data in positron emission tomography, namely reconstructions of cardiac structures with 18F-FDG and H\(_2 \, ^{15}\)O tracers, respectively.


Denoising Poisson noise Total variation Regularization techniques Positron emission tomography Segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Soc. for Industrial and Applied Math., Philadelphia (2005)zbMATHGoogle Scholar
  2. 2.
    Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  3. 3.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHCrossRefGoogle Scholar
  4. 4.
    Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10, 1217–1229 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)zbMATHGoogle Scholar
  6. 6.
    Bertero, M., Lantéri, H., Zanni, L.: Iterative image reconstruction: a point of view. In: Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT). CRM series, vol. 7, pp. 37–63 (2008)Google Scholar
  7. 7.
    Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Transactions on Medical Imaging 1(2), 113–122 (1982)CrossRefGoogle Scholar
  8. 8.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Sawatzky, A., Brune, C., Wübbeling, F., Kösters, T., Schäfers, K., Burger, M.: Accurate EM-TV algorithm in PET with low SNR. In: IEEE Nuclear Science Symposium Conference Record (2008)Google Scholar
  10. 10.
    Brune, C., Sawatzky, A., Burger, M.: Bregman-EM-TV methods with application to optical nanoscopy. In: Tai, X.-C., et al. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 235–246. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Brune, C., Sawatzky, A., Wübbeling, F., Kösters, T., Burger, M.: EM-TV methods for inverse problems with Poisson noise (in preparation, 2009)Google Scholar
  12. 12.
    Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vision 27(3), 257–263 (2007)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM Monographs on Mathematical Modeling and Computation (2001)Google Scholar
  14. 14.
    Resmerita, E., Engl, H.W., Iusem, A.N.: The EM algorithm for ill-posed integral equations: a convergence analysis. Inverse Problems 23, 2575–2588 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20, 89–97 (2004)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for positron emission tomography. J. of the American Statistical Association 80(389), 8–20 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Wernick, M.N., Aarsvold, J.N.: Emission Tomography: The Fundamentals of PET and SPECT. Elsevier Academic Press, Amsterdam (2004)Google Scholar
  18. 18.
    Schäfers, K.P., Spinks, T.J., Camici, P.G., Bloomfield, P.M., Rhodes, C.G., Law, M.P., Baker, C.S.R., Rimoldi, O.: Absolute quantification of myocardial blood flow with H\(_2 \, ^{15}\)O and 3-Dimensional PET: An experimental validation. Journal of Nuclear Medicine 43, 1031–1040 (2001)Google Scholar
  19. 19.
    Benning, M., Kösters, T., Wübbeling, F., Schäfers, K.P., Burger, M.: A nonlinear variational method for improved quantification of myocardial blood flow using dynamic H\(_2 \, ^{15}\)O PET. In: IEEE NSS Conference Record (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alex Sawatzky
    • 1
  • Christoph Brune
    • 1
  • Jahn Müller
    • 1
  • Martin Burger
    • 1
  1. 1.Institut für Numerische und Angewandte MathematikWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations