Feature Ranking Algorithms for Improving Classification of Vector Space Embedded Graphs

  • Kaspar Riesen
  • Horst Bunke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5702)


Graphs provide us with a powerful and flexible representation formalism for pattern recognition. Yet, the vast majority of pattern recognition algorithms rely on vectorial data descriptions and cannot directly be applied to graphs. In order to overcome this severe limitation, an embedding of the underlying graphs in a vector space ℝn is employed. The basic idea is to regard the dissimilarities of a graph g to a number of prototype graphs as numerical features of g. In previous works, the prototypes are selected beforehand with selection strategies based on some heuristics. In the present paper we take a more fundamental approach and regard the problem of prototype selection as a feature selection problem, for which many methods are available. With several experimental results we show the feasibility of graph embedding based on prototypes obtained from feature selection algorithms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)CrossRefGoogle Scholar
  2. 2.
    Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1, 245–253 (1983)MATHCrossRefGoogle Scholar
  3. 3.
    Luo, B., Wilson, R., Hancock, E.: Spectral embedding of graphs. Pattern Recognition 36(10), 2213–2223 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Caelli, T., Kosinov, S.: Inexact graph matching using eigen-subspace projection clustering. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 329–355 (2004)CrossRefGoogle Scholar
  5. 5.
    Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. World Scientific, Singapore (2005)MATHGoogle Scholar
  6. 6.
    Riesen, K., Bunke, H.: Graph classification based on vector space embedding. Int. Journal of Pattern Recognition and Artificial Intelligence (2008) (accepted for publication)Google Scholar
  7. 7.
    Langley, P.: Selection of relevant features in machine learning. In: AAAI Fall Symposium on Relevance, pp. 140–144 (1994)Google Scholar
  8. 8.
    Kohavi, R., John, G.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)MATHCrossRefGoogle Scholar
  9. 9.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image and Vision Computing 27(4), 950–959 (2009)CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Tetko, I., Hall, M., Frank, E., Facius, A., Mayer, K., Mewes, H.W.: Gene selection from microarray data for cancer classification – a machine learning approach. Computational Biology and Chemistry 29, 37–46 (2005)MATHCrossRefGoogle Scholar
  11. 11.
    Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature-selection. Pattern Recognition Letters 15(11), 1119–1125 (1994)CrossRefGoogle Scholar
  12. 12.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(8), 1226–1238 (2005)CrossRefGoogle Scholar
  13. 13.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–422 (2002)MATHCrossRefGoogle Scholar
  14. 14.
    Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kaspar Riesen
    • 1
  • Horst Bunke
    • 1
  1. 1.Institute of Computer Science and Applied MathematicsUniversity of BernBernSwitzerland

Personalised recommendations