Advertisement

A Hypergraph-Based Model for Graph Clustering: Application to Image Indexing

  • Salim Jouili
  • Salvatore Tabbone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5702)

Abstract

In this paper, we introduce a prototype-based clustering algorithm dealing with graphs. We propose a hypergraph-based model for graph data sets by allowing clusters overlapping. More precisely, in this representation one graph can be assigned to more than one cluster. Using the concept of the graph median and a given threshold, the proposed algorithm detects automatically the number of classes in the graph database. We consider clusters as hyperedges in our hypergraph model and we define a retrieval technique indexing the database with hyperedge centroids. This model is interesting to travel the data set and efficient to cluster and retrieve graphs.

Keywords

Rand Index Graph Cluster Graph Database Graph Query Median Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, S., Lim, J., Zelnik-Manor, L., Perona, P., Kriegman, D.J., Belongie, S.: Beyond pairwise clustering. In: IEEE CVPR, pp. 838–845 (2005)Google Scholar
  2. 2.
    Babu, T.R., Murty, M.N.: Comparaison of genetic algorithm based prototype selection schemes. Pattern Recognition 34, 523–525 (2001)CrossRefGoogle Scholar
  3. 3.
    Berge, C.: Graphes et Hypergraphes. Paris Dunod (1970)Google Scholar
  4. 4.
    Bezdek, J.C., Pal, M.R., Keller, J., Krisnapuram, R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Publishers, Norwell (1999)zbMATHGoogle Scholar
  5. 5.
    Bunke, H., Dickinson, P.J., Kraetzl, M., Neuhaus, M., Stettler, M.: Matching of hypergraphs - algorithms, applications, and experiments. In: Bunke, H., Kandel, A., Last, M. (eds.) Applied Pattern Recognition. Studies in Computational Intelligence, vol. 91, pp. 131–154. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bunke, H., Foggia, P., Guidobaldi, C., Vento, M.: Graph clustering using the weighted minimum common supergraph. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 235–246. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Dosch, P., Valveny, E.: Report on the second symbol recognition contest. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 381–397. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  9. 9.
    Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings of The Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  10. 10.
    Hlaoui, A., Wang, S.: A graph clustering algorithm with applications to content-based image retrieval. In: ICMLC 2003, vol. 3, pp. 1855–1861 (2003)Google Scholar
  11. 11.
    Jiang, X., Munger, A., Bunke, H.: On median graphs:properties, algorithms, and applications. IEEE TPAMI 23(10), 1144–1151 (2001)Google Scholar
  12. 12.
    Jouili, S., Tabbone, S.: Graph matching using node signatures. In: IAPR Workshop on GbRPR. LNCS, vol. 5534, pp. 154–163. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Luo, B., Wilson, R.C., Hancock, E.R.: Spectral feature vectors for graph clustering. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 83–93. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Nene, S., Nayar, S., Murase, H.: Columbia object image library (coil-100). Technical report, Columbia Univ. (1996)Google Scholar
  15. 15.
    Ren, P., Wilson, R.C., Hancock, E.R.: Spectral embedding of feature hypergraphs. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 308–317. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 383–393. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE TPAMI 27(3), 365–378 (2005)Google Scholar
  19. 19.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Shock-based indexing into large shape databases. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 731–746. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Sengupta, K., Boyer, K.: Organizing large structural modelbases. IEEE TPAMI 17(4), 321–332 (1995)Google Scholar
  21. 21.
    Shapiro, L.G., Haralick, R.M.: Organization of relational models for scene analysis. IEEE TPAMI PAMI-4(6), 595–602 (1982)Google Scholar
  22. 22.
    Shokoufandeh, A., Dickinson, S.J.: A unified framework for indexing and matching hierarchical shape structures. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 67–84. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Spath, H.: Cluster analysis algorithms for data reduction and classification of objects. Ellis Horwood Limited, West Sussex (1980)Google Scholar
  24. 24.
    Torsello, A., Bulò, S.R., Pelillo, M.: Beyond partitions: Allowing overlapping groups in pairwise clustering. In: ICPR, pp. 1–4. IEEE, Los Alamitos (2008)Google Scholar
  25. 25.
    Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301), 236–244 (1963)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Salim Jouili
    • 1
  • Salvatore Tabbone
    • 1
  1. 1.LORIA UMR 7503University of Nancy 2Vandoeuvre-lès-Nancy CedexFrance

Personalised recommendations