Graph-Based k-Means Clustering: A Comparison of the Set Median versus the Generalized Median Graph

  • M. Ferrer
  • E. Valveny
  • F. Serratosa
  • I. Bardají
  • H. Bunke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5702)


In this paper we propose the application of the generalized median graph in a graph-based k-means clustering algorithm. In the graph-based k-means algorithm, the centers of the clusters have been traditionally represented using the set median graph. We propose an approximate method for the generalized median graph computation that allows to use it to represent the centers of the clusters. Experiments on three databases show that using the generalized median graph as the clusters representative yields better results than the set median graph.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  2. 2.
    Günter, S., Bunke, H.: Self-organizing map for clustering in the graph domain. Pattern Recognition Letters 23(4), 405–417 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Serratosa, F., Alquézar, R., Sanfeliu, A.: Synthesis of function-described graphs and clustering of attributed graphs. International Journal of Pattern Recognition and Artificial Intelligence 16(6), 621–656 (2002)CrossRefGoogle Scholar
  4. 4.
    Luo, B., Robles-Kelly, A., Torsello, A., Wilson, R.C., Hancock, E.: Clustering shock trees. In: Proc. 3rd IAPR Workshop Graph-Based Representations in Pattern Recognition, pp. 217–228 (2001)Google Scholar
  5. 5.
    Schenker, A., Bunke, H., Last, M., Kandel, A.: Graph-Theoretic Techniques for Web Content Mining. World Scientific Publishing, USA (2005)MATHGoogle Scholar
  6. 6.
    Jiang, X., Münger, A., Bunke, H.: On median graphs: Properties, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1144–1151 (2001)CrossRefGoogle Scholar
  7. 7.
    Bunke, H., Münger, A., Jiang, X.: Combinatorial search versus genetic algorithms: A case study based on the generalized median graph problem. Pattern Recognition Letters 20(11-13), 1271–1277 (1999)CrossRefGoogle Scholar
  8. 8.
    Hlaoui, A., Wang, S.: Median graph computation for graph clustering. Soft Comput. 10(1), 47–53 (2006)CrossRefGoogle Scholar
  9. 9.
    Ferrer, M., Serratosa, F., Sanfeliu, A.: Synthesis of median spectral graph. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 139–146. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 383–393. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Bunke, H., Günter, S.: Weighted mean of a pair of graphs. Computing 67(3), 209–224 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)MATHGoogle Scholar
  13. 13.
    Bunke, H., Allerman, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1(4), 245–253 (1983)MATHCrossRefGoogle Scholar
  14. 14.
    Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics 13(3), 353–362 (1983)MATHGoogle Scholar
  15. 15.
    Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In: IEEE Symposium on Foundations of Computer Science, pp. 10–33 (2001)Google Scholar
  16. 16.
    Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recognition 36(10), 2213–2230 (2003)MATHCrossRefGoogle Scholar
  17. 17.
    Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)CrossRefGoogle Scholar
  18. 18.
    Robles-Kelly, A., Hancock, E.R.: A Riemannian approach to graph embedding. Pattern Recognition 40(3), 1042–1056 (2007)MATHCrossRefGoogle Scholar
  19. 19.
    Pekalska, E., Duin, R.P.W., Paclík, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recognition 39(2), 189–208 (2006)MATHCrossRefGoogle Scholar
  20. 20.
    Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: An approximate algorithm for median graph computation using graph embedding. In: Proceedings of 19th ICPR, pp. 287–297 (2008)Google Scholar
  21. 21.
    Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the computation of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 163–172. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math. Journal (43), 355–386 (1937)Google Scholar
  24. 24.
    Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistival Association 66, 846–850 (1971)CrossRefGoogle Scholar
  26. 26.
    Dunn, J.: Well separated clusters and optimal fuzzy partitions. Journal of Cibernetics 4, 95–104 (1974)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Ferrer
    • 1
  • E. Valveny
    • 2
  • F. Serratosa
    • 3
  • I. Bardají
    • 1
  • H. Bunke
    • 4
  1. 1.Institut de Robòtica i Informàtica Industrial, CSIC-UPCBarcelonaSpain
  2. 2.Centre de Visió per ComputadorUniversitat Autònoma de BarcelonaBellaterraSpain
  3. 3.Departament d’Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain
  4. 4.Institute of Computer Science and Applied MathematicsUniversity of BernBernSwitzerland

Personalised recommendations