Regression Based Non-frontal Face Synthesis for Improved Identity Verification

  • Yongkang Wong
  • Conrad Sanderson
  • Brian C. Lovell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5702)

Abstract

We propose a low-complexity face synthesis technique which transforms a 2D frontal view image into views at specific poses, without recourse to computationally expensive 3D analysis or iterative fitting techniques that may fail to converge. The method first divides a given image into multiple overlapping blocks, followed by synthesising a non-frontal representation through applying a multivariate linear regression model on a low-dimensional representation of each block. To demonstrate one application of the proposed technique, we augment a frontal face verification system by incorporating multi-view reference (gallery) images synthesised from the frontal view. Experiments on the pose subset of the FERET database show considerable reductions in error rates, especially for large deviations from the frontal view.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Phillips, P., Grother, P., Micheals, R., Blackburn, D., Tabassi, E., Bone, M.: Face recognition vendor test 2002. In: Proc. Int. Workshop on Analysis and Modeling of Faces and Gestures (AMFG), p. 44 (2003)Google Scholar
  2. 2.
    Cootes, T., Walker, K., Taylor, C.: View-based active appearance models. In: Proc. 4th IEEE Int. Conf. Automatic Face and Gesture Recognition, pp. 227–232 (2000)Google Scholar
  3. 3.
    Shan, T., Lovell, B., Chen, S.: Face recognition robust to head pose from one sample image. In: Proc. ICPR, vol. 1, pp. 515–518 (2006)Google Scholar
  4. 4.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Analysis and Machine Intelligence 25(9), 1063–1074 (2003)CrossRefGoogle Scholar
  5. 5.
    Blanz, V., Grother, P., Phillips, P., Vetter, T.: Face recognition based on frontal views generated from non-frontal images. In: Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 454–461 (2005)Google Scholar
  6. 6.
    Gonzales, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice-Hall, Englewood Cliffs (2007)Google Scholar
  7. 7.
    Rice, J.: Mathematical Statistics and Data Analysis, 2nd edn. Duxbury Press (1995)Google Scholar
  8. 8.
    Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  9. 9.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  10. 10.
    Rodriguez, Y., Cardinaux, F., Bengio, S., Mariethoz, J.: Measuring the performance of face localization systems. Image and Vision Comput. 24, 882–893 (2006)CrossRefGoogle Scholar
  11. 11.
    Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)MATHCrossRefGoogle Scholar
  12. 12.
    Sanderson, C.: Biometric Person Recognition: Face, Speech and Fusion. VDM-Verlag (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yongkang Wong
    • 1
    • 2
  • Conrad Sanderson
    • 1
    • 2
  • Brian C. Lovell
    • 1
    • 2
  1. 1.NICTASt LuciaAustralia
  2. 2.School of ITEEThe University of QueenslandAustralia

Personalised recommendations