Texture Editing Using Frequency Swap Strategy

  • Michal Haindl
  • Vojtěch Havlíček
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5702)


A fully automatic colour texture editing method is proposed, which allows to synthesise and enlarge an artificial texture sharing anticipated properties from its parent textures. The edited colour texture maintains its original colour spectrum while its frequency is modified according to one or more target template textures. Edited texture is synthesised using a fast recursive model-based algorithm. The algorithm starts with edited and target colour texture samples decomposed into a multi-resolution grid using the Gaussian-Laplacian pyramid. Each band pass colour factors are independently modelled by their dedicated 3D causal autoregressive random field models (CAR). We estimate an optimal contextual neighbourhood and parameters for each of the CAR submodel. The synthesised multi-resolution Laplacian pyramid of the edited colour texture is replaced by the synthesised template texture Laplacian pyramid. Finally the modified texture pyramid is collapsed into the required fine resolution colour texture. The primary benefit of these multigrid texture editing models is their ability to produce realistic novel textures with required visual properties capable of enhancing realism in various texture application areas.


Contextual Neighbourhood Texture Synthesis Dynamic Texture Colour Texture Image Editing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brooks, S., Dodgson, N.A.: Integrating procedural textures with replicated image editing. In: Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia 2005, Dunedin, New Zealand, November 29 - December 2, pp. 277–280. ACM, New York (2005)CrossRefGoogle Scholar
  2. 2.
    Ashikhmin, M.: Synthesizing natural textures. In: ACM Symposium on Interactive 3D Graphics, pp. 217–226 (2001)Google Scholar
  3. 3.
    Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., Werman, M.: Texture mixing and texture movie synthesis using statistical learning. IEEE Transactions on Visualization and Computer Graphics 7, 120–135 (2001)CrossRefGoogle Scholar
  4. 4.
    Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based sampling. ACM Transactions on Graphics (TOG) 20, 127–150 (2001)CrossRefGoogle Scholar
  5. 5.
    Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. ACM Trans. Graph., 327–340 (2001)Google Scholar
  6. 6.
    Wiens, A.L., Ross, J.: Gentropy: evolving 2d textures. Computers & Graphics 26, 75–88 (2002)CrossRefGoogle Scholar
  7. 7.
    Wang, X., Wang, L., Liu, L., Hu, S., Guo, B.: Interactive modeling of tree bark. In: Proc. 11th Pacific Conf. on Comp. Graphics and Appl., pp. 83–90. IEEE, Los Alamitos (2003)Google Scholar
  8. 8.
    Brooks, S., Cardle, M., Dodgson, N.A.: Enhanced texture editing using self similarity. In: VVG, pp. 231–238 (2003)Google Scholar
  9. 9.
    Brooks, S., Dodgson, N.A.: Self-similarity based texture editing. ACM Trans. Graph 21, 653–656 (2002)CrossRefGoogle Scholar
  10. 10.
    Khan, E.A., Reinhard, E., Fleming, R.W., Bülthoff, H.H.: Image-based material editing. ACM Trans. Graph 25, 654–663 (2006)CrossRefGoogle Scholar
  11. 11.
    Besag, J.: Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B B-36, 192–236 (1974)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Kashyap, R.: Analysis and synthesis of image patterns by spatial interaction models. In: Kanal, L., Rosenfeld, A. (eds.) Progress in Pattern Recognition, vol. 1. North-Holland, Elsevier (1981)Google Scholar
  13. 13.
    Haindl, M., Havlíček, V.: Multiresolution colour texture synthesis. In: Dobrovodský, K. (ed.) Proceedings of the 7th International Workshop on Robotics in Alpe-Adria-Danube Region, Bratislava, ASCO Art, pp. 297–302 (1998)Google Scholar
  14. 14.
    Bennett, J., Khotanzad, A.: Multispectral random field models for synthesis and analysis of color images. IEEE Trans. on Pattern Analysis and Machine Intelligence 20, 327–332 (1998)CrossRefGoogle Scholar
  15. 15.
    Bennett, J., Khotanzad, A.: Maximum likelihood estimation methods for multispectral random field image models. IEEE Trans. on Pattern Analysis and Machine Intelligence 21, 537–543 (1999)CrossRefGoogle Scholar
  16. 16.
    Haindl, M., Havlíček, V.: A multiresolution causal colour texture model. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 114–122. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Haindl, M.: Texture synthesis. CWI Quarterly 4, 305–331 (1991)zbMATHGoogle Scholar
  18. 18.
    Haindl, M.: Texture modelling. In: Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, Orlando, USA, vol. VII, pp. 634–639. International Institute of Informatics and Systemics (2000)Google Scholar
  19. 19.
    Haindl, M., Havlíček, V.: A simple multispectral multiresolution markov texture model. In: Texture 2002, The 2nd international workshop on texture analysis and synthesis, Copenhagen, pp. 63–66. Heriot-Watt University (2003)Google Scholar
  20. 20.
    Haindl, M., Havlíček, V.: A multiscale colour texture model. In: Proceedings of the 16th International Conference on Pattern Recognition, pp. 255–258. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  21. 21.
    Haindl, M., Filip, J.: Fast BTF texture modelling. In: Texture 2003. Proceedings, Edinburgh, pp. 47–52. IEEE Press, Los Alamitos (2003)Google Scholar
  22. 22.
    Haindl, M., Filip, J., Arnold, M.: BTF image space utmost compression and modelling method. In: Proceedings of the 17th IAPR International Conference on Pattern Recognition, vol. III, pp. 194–197. IEEE, Los Alamitos (2004)CrossRefGoogle Scholar
  23. 23.
    Haindl, M., Filip, J.: A fast probabilistic bidirectional texture function model. LNCS, pp. 298–305. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Haindl, M., Filip, J.: Extreme compression and modeling of bidirectional texture function. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1859–1865 (2007)CrossRefGoogle Scholar
  25. 25.
    Filip, J., Haindl, M., Chetverikov, D.: Fast synthesis of dynamic colour textures. In: Proceedings of the 18th International Conference on Pattern Recognition, ICPR 2006, vol. IV, pp. 25–28. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  26. 26.
    Vision texture (vistex) database. Technical report, Vision and Modeling Group,

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michal Haindl
    • 1
  • Vojtěch Havlíček
    • 1
  1. 1.Institute of Information Theory and Automation, of the ASCRPragueCzech Republic

Personalised recommendations