Advertisement

Nonlinear Motion Detection

  • Lennart Wietzke
  • Gerald Sommer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5702)

Abstract

This work presents new ideas in multidimensional signal theory: an isotropic quadrature filter approach for extracting local features of arbitrary curved signals without the use of any steering techniques. We unify scale space, local amplitude, orientation, phase and curvature in one framework. The main idea is to lift up signals by a conformal mapping to the higher dimensional conformal space where the local signal features can be analyzed with more degrees of freedom compared to the flat space of the original signal domain. The philosophy is based on the idea to make use of the relation of the conformal signal to geometric entities such as hyper-planes and hyper-spheres. Furthermore, the conformal signal can not only be applied to 2D and 3D signals but also to signals of any dimension. The main advantages in practical applications are the rotational invariance, the low computational time complexity, the easy implementation into existing Computer Vision software packages, and the numerical robustness of calculating exact local curvature of signals without the need of any derivatives. Applications can be optical flow and object tracking not only limited to constant velocities but detecting also arbitrary accelerations which correspond to the local curvature.

Keywords

Conformal Space Multidimensional Signal Local Amplitude Monogenic Signal Radon Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brackx, F., De Knock, B., De Schepper, H.: Generalized multidimensional Hilbert transforms in Clifford analysis. International Journal of Mathematics and Mathematical Sciences (2006)Google Scholar
  2. 2.
    Felsberg, M.: Low-level image processing with the structure multivector. Technical Report 2016, Kiel University, Department of Computer Science (2002)Google Scholar
  3. 3.
    Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision 21, 5–26 (2004)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Grau, V., Becher, H., Noble, J.A.: Phase-based registration of multi-view real-time three-dimensional echocardiographic sequences. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 612–619. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Gürlebeck, K., Habetha, K., Sprössig, W.: Funktionentheorie in der Ebene und im Raum. Grundstudium Mathematik. Birkhäuser, Basel (2006)zbMATHGoogle Scholar
  6. 6.
    Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House Inc., Boston (1996)zbMATHGoogle Scholar
  7. 7.
    Krause, M., Sommer, G.: A 3D isotropic quadrature filter for motion estimation problems. In: Proc. Visual Communications and Image Processing, Beijing, China, vol. 5960, pp. 1295–1306. The International Society for Optical Engineering, Bellingham (2005)Google Scholar
  8. 8.
    Lichtenauer, J., Hendriks, E.A., Reinders, M.J.T.: Isophote properties as features for object detection. In: CVPR (2), pp. 649–654 (2005)Google Scholar
  9. 9.
    Wietzke, L., Fleischmann, O., Sommer, G.: 2D image analysis by generalized hilbert transforms in conformal space. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 638–649. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Wietzke, L., Fleischmann, O., Sommer, G.: Signal analysis by generalized hilbert transforms on the unit sphere. In: Simos, T.E. (ed.) International Conference on Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, Melville, New York, vol. 1048, pp. 706–709 (2008)Google Scholar
  11. 11.
    Wietzke, L., Sommer, G.: The conformal monogenic signal. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 527–536. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Wietzke, L., Sommer, G., Schmaltz, C., Weickert, J.: Differential geometry of monogenic signal representations. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 454–465. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lennart Wietzke
    • 1
  • Gerald Sommer
    • 1
  1. 1.Department of Computer ScienceCognitive Systems Group, Kiel UniversityKielGermany

Personalised recommendations