Locally Adaptive Speed Functions for Level Sets in Image Segmentation

  • Karsten Rink
  • Klaus Tönnies
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5702)


We propose a framework for locally adaptive level set functions. The impact of well-known speed terms for the evolution of the active contour is adjusted by parameterising them with functions based on pre-defined properties. This allows for the application of level set methods even if image features are subject to large variations or if certain properties of the model are only valid for parts of the segmentation process. We present a number of examples and applications for the proposed concept and also address advantages and drawbacks of combinations of locally adaptive speed terms.


Image Segmentation Level Set Methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cao, Z., Dawant, B.M.: Edge completion from sparse data: A level set approach. In: Proc. of SPIE Medical Imaging, pp. 515–525 (2004)Google Scholar
  2. 2.
    Chan, T.F., Vese, L.A.: Active Contours Without Edges. IEEE Trans Image Process 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chan, T., Zhu, W.: Level set based shape prior segmentation. In: Proc. of IEEE Conf on Computer Vision and Pattern Recognition (CVPR), pp. 1164–1170 (2005)Google Scholar
  4. 4.
    Cootes, T.F., Cooper, D., Taylor, C.J., Graham, J.: Active Shape Models - Their Training and Application. Comput Vis Image Understand 61(1), 38–59 (1995)CrossRefGoogle Scholar
  5. 5.
    Cremers, D., Fluck, O., Rousson, M., Aharon, S.: A Probabilistic Level Set Formulation for Interactive Organ Segmentation. In: Proc. of SPIE Medical Imaging, pp. 304–313 (2007)Google Scholar
  6. 6.
    Fischl, B., Dale, A.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Nat. Acad. Sci. 97(20), 11044–11049 (2000)CrossRefGoogle Scholar
  7. 7.
    Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Cortex Segmentation: A Fast Variational Geometric Approach. IEEE Trans. Med. Imag. 21(2), 1544–1551 (2002)CrossRefGoogle Scholar
  8. 8.
    Han, X., Xu, C., Prince, J.L.: A Topology Preserving Level Set Method for Geometric Deformable Models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003)CrossRefGoogle Scholar
  9. 9.
    Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical Shape Influence in Geodesic Active Contours. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 316–322 (2000)Google Scholar
  10. 10.
    Malladi, R., Sethian, J.A., Vemuri, B.: Shape Modelling with Front Propagation: A Level Set Approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)CrossRefGoogle Scholar
  11. 11.
    Osher, S., Sethian, J.A.: Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulation. J. Comput. Phys. 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Paragios, N., Deriche, R.: Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation. Int. J. Comput. Vis. 46(3), 223–247 (2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    Rink, K., Tönnies, K.: Distance-based Speed Functions for Level Set Methods in Image Segmentation. In: Proc. of British Machine Vision Conference (BMVC), pp. 283–292 (2008)Google Scholar
  14. 14.
    Sokoll, S., Rink, K., Tönnies, K., Brechmann, A.: Dynamic Segmentation of the Cerebral Cortex in MR Data using Implicit Active Contours. In: Proc. of Medical Image Unterstanding and Analysis (MIUA), pp. 184–188 (2008)Google Scholar
  15. 15.
    Terzopoulos, D., Fleischer, K.: Deformable Models. Visual Comput. 4(6), 306–331 (1988)CrossRefGoogle Scholar
  16. 16.
    Van Bemmel, C.M., Spreeuwers, L.J., Viergever, M.A., Niessen, W.J.: A Level-Set-Based Artery-Vein Separation in Blood-Pool Agent CR-MR Angiograms. IEEE Trans. Med. Imag. 22(10), 1224–1234 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Karsten Rink
    • 1
  • Klaus Tönnies
    • 1
  1. 1.Department for Simulation and GraphicsUniversity of MagdeburgGermany

Personalised recommendations