Rapid Inference of Object Rigidity and Reflectance Using Optic Flow

  • Di Zang
  • Katja Doerschner
  • Paul R. Schrater
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5702)


Rigidity and reflectance are key object properties, important in their own rights, and they are key properties that stratify motion reconstruction algorithms. However, the inference of rigidity and reflectance are both difficult without additional information about the object’s shape, the environment, or lighting. For humans, relative motions of object and observer provides rich information about object shape, rigidity, and reflectivity. We show that it is possible to detect rigid object motion for both specular and diffuse reflective surfaces using only optic flow, and that flow can distinguish specular and diffuse motion for rigid objects. Unlike nonrigid objects, optic flow fields for rigid moving surfaces are constrained by a global transformation, which can be detected using an optic flow matching procedure across time. In addition, using a Procrustes analysis of structure from motion reconstructed 3D points, we show how to classify specular from diffuse surfaces.


Optic flow rigidity detection specular motion reflectance classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  2. 2.
    Zisserman, A., Giblin, P., Blake, A.: The information available to a moving observer from specularities. IVC 7(1), 38–42Google Scholar
  3. 3.
    Roth, S., Black, M.J.: Specular flow and the recovery of surface structure. In: CVPR 2006: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1869–1876 (2006)Google Scholar
  4. 4.
    Adato, Y., Vasilyev, Y., Ben Shahar, O., Zickler, T.: Toward a theory of shape from specular flow. In: ICCV 2007, pp. 1–8 (2007)Google Scholar
  5. 5.
    Vasilyev, Y., Adato, Y., Zickler, T., Ben Shahar, O.: Dense specular shape from multiple specular flows. In: CVPR 2008, pp. 1–8 (2008)Google Scholar
  6. 6.
    Healey, G., Binford, T.: Local shape from specularity. CVGIP 42(1), 62–86 (1988)Google Scholar
  7. 7.
    Bhat, D., Nayar, S.: Binocular stereo in the presence of specular reflection. In: ARPA 1994, pp. 1305–1315 (1994)Google Scholar
  8. 8.
    Saito, M., Kashiwagi, H., Sato, Y., Ikeuchi, K.: Measurement of surface orientations of transparent objects using polarization in highlight. In: Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p. 1381 (1999)Google Scholar
  9. 9.
    Lin, S., Li, Y., Kang, S.B., Tong, X., Shum, H.-Y.: Diffuse-specular separation and depth recovery from image sequences. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 210–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Lellmann, J., Balzer, J., Rieder, A., Beyerer, J.: Shape from specular reflection and optical flow. International Journal of Computer Vision 80(2), 226–241 (2008)CrossRefGoogle Scholar
  11. 11.
    Chow, S.K., Chan, K.L.: Removal of specular reflection component using multi-view images and 3d object model. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 999–1009. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Oren, M., Nayar, S.: A theory of specular surface geometry. International Journal of Computer Vision 24(2), 105–124 (1997)CrossRefGoogle Scholar
  13. 13.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)CrossRefGoogle Scholar
  14. 14.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. International Journal of Computer Vision 9(2), 137–154 (1992)CrossRefGoogle Scholar
  15. 15.
    Gower, J., Dijksterhuis, G.: Procrustes Problems. Oxford University Press, Oxford (2004)zbMATHCrossRefGoogle Scholar
  16. 16.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (1992)Google Scholar
  17. 17.
    Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision 61(3), 211–231 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Di Zang
    • 1
  • Katja Doerschner
    • 2
  • Paul R. Schrater
    • 1
  1. 1.Dept. of Computer Science & EngineeringUniversity of MinnesotaUSA
  2. 2.National Research Center for Magnetic Resonance (UMRAM) & Dept. of PsychologyBilkent UniversityTurkey

Personalised recommendations