Fitting Product of HMM to Human Motions

  • M. Ángeles Mendoza
  • Nicolás Pérez de la Blanca
  • Manuel J. Marín-Jiménez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5702)

Abstract

The Product of Hidden Markov Models (PoHMM) is a mixed graphical model defining a probability distribution on a sequence space from the normalized product of several simple Hidden Markov Models (HMMs). Here, we use this model to approach the human action recognition task incorporating mixture-Gaussian output distributions. PoHMM allow us to consider context at different range and to model different dynamics corresponding to different body parts in an efficient way. For estimating the normalization constant Z we introduce the annealed importance sampling (AIS) method in the context of PoHMM in order to obtain no-relative estimates of Z. We compare our approach with one based on fitting a logistic regression model to each two PoHMMs.

Keywords

partition function PoHMM human action recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mendoza, M.A., Pérez de la Blanca, N.: Applying space state models in human action recognition: A comparative study. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2008. LNCS, vol. 5098, pp. 53–62. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Brown, A., Hinton, G.E.: Products of hidden markov models. Artificial Intelligence and Statistics, 3–11 (2001)Google Scholar
  3. 3.
    Neal, R.M.: Annealed importance sampling. Statistics and Computing 11(2), 125–139 (1998)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. of the IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  5. 5.
    Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Computation 14(8), 1771–1800 (2002)MATHCrossRefGoogle Scholar
  6. 6.
    Salakhutdinov, R., Murray, I.: On the quantitative analysis of deep belief networks. In: Proceedings of the Int. conf. on Machine Learning, vol. 25, pp. 872–879 (2008)Google Scholar
  7. 7.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm approach. Pattern Recognition 3(1), 32–36 (2004)Google Scholar
  8. 8.
    Efros, A.A., Berg, A.C., Mori, G., Malik, J.: Recognizing action at a distance. Computer Vision 2, 726–733 (2003)Google Scholar
  9. 9.
    Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Ángeles Mendoza
    • 1
  • Nicolás Pérez de la Blanca
    • 1
  • Manuel J. Marín-Jiménez
    • 1
  1. 1.Department of Computer Science and A.I.University of GranadaSpain

Personalised recommendations