Advertisement

Context Based Wikipedia Linking

  • Michael Granitzer
  • Christin Seifert
  • Mario Zechner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5631)

Abstract

Automatically linking Wikipedia pages can be done either content based by exploiting word similarities or structure based by exploiting characteristics of the link graph. Our approach focuses on a content based strategy by detecting Wikipedia titles as link candidates and selecting the most relevant ones as links. The relevance calculation is based on the context, i.e. the surrounding text of a link candidate. Our goal was to evaluate the influence of the link-context on selecting relevant links and determining a links best-entry-point. Results show, that a whole Wikipedia page provides the best context for resolving link and that straight forward inverse document frequency based scoring of anchor texts achieves around 4% less Mean Average Precision on the provided data set.

Keywords

INEX Link-the-Wiki Context Exploitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldridge, T.M.J., Bierner, G.: Opennlp: The maximum entropy framework (2001), http://maxent.sourceforge.net/about.html (last visited June 2008)
  2. 2.
    Choi, F.Y.Y.: Advances in domain independent linear text segmentation. In: Proceedings of the first conference on North American chapter of the Association for Computational Linguistics, pp. 26–33. Morgan Kaufmann Publishers Inc., San Francisco (2000)Google Scholar
  3. 3.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  4. 4.
    Geva, S.: Gpx: Ad-hoc queries and automated link discovery in the wikipedia, pp. 404–416 (2008)Google Scholar
  5. 5.
    Hatcher, E., Gospodnetic, O.: Lucene in Action (In Action series). Manning Publications (December 2004)Google Scholar
  6. 6.
    Huang, D.W.C., Xu, Y., Trotman, A., Geva, S.: Overview of inex 2007 link the wiki track. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 373–387. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Itakura, K.Y., Clarke, C.L.: University of waterloo at inex2007: Adhoc and link-the-wiki tracks, pp. 417–425 (2008)Google Scholar
  8. 8.
    Milne, D., Witten, I.H.: Learning to link with wikipedia. In: CIKM 2008: Proceeding of the 17th ACM conference on Information and knowledge mining, pp. 509–518. ACM, New York (2008)CrossRefGoogle Scholar
  9. 9.
    Smucker, M.D., Allan, J., Carterette, B.: A comparison of statistical significance tests for information retrieval evaluation. In: CIKM 2007: Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, pp. 623–632. ACM, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Wu, F., Weld, D.S.: Autonomously semantifying wikipedia. In: CIKM 2007: Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, pp. 41–50. ACM, New York (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Granitzer
    • 1
  • Christin Seifert
    • 2
  • Mario Zechner
    • 2
  1. 1.Knowledge Management InstituteGraz University of TechnologyGrazAustria
  2. 2.Know-Center GrazGrazAustria

Personalised recommendations