Advertisement

Adapting Language Modeling Methods for Expert Search to Rank Wikipedia Entities

  • Jiepu Jiang
  • Wei Lu
  • Xianqian Rong
  • Yangyan Gao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5631)

Abstract

In this paper, we propose two methods to adapt language modeling methods for expert search to the INEX entity ranking task. In our experiments, we notice that language modeling methods for expert search, if directly applied to the INEX entity ranking task, cannot effectively distinguish entity types. Thus, our proposed methods aim at resolving this problem. First, we propose a method to take into account the INEX category query field. Second, we use an interpolation of two language models to rank entities, which can solely work on the text query. Our experiments indicate that both methods can effectively adapt language modeling methods for expert search to the INEX entity ranking task.

Keywords

entity retrieval entity ranking language model expert search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balog, K., Azzopardi, L., de Rijke, M.: Formal Models for Expert Finding in Enterprise Corpora. In: Proceeding of the 29th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR 2006), Seattle, Washington, USA, pp. 43–50 (2006)Google Scholar
  2. 2.
    Petkova, D., Croft, W.B.: Proximity-Based Document Representation for Named Entity Retrieval. In: Proceedings of the 16th ACM conference on Conference on information and knowledge management (CIKM 2007), Lisbon, Portugal, pp. 731–740 (2007)Google Scholar
  3. 3.
    Balog, K., de Rijke, M.: Associating People and Documents. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 296–308. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Serdyukov, P., Rode, H., Hiemstra, D.: Modeling multi-step relevance propagation for expert finding. In: Proceedings of 17th ACM conference on Information and know-ledge management (CIKM 2008), Napa Valley, California, USA, pp. 1133–1142 (2008)Google Scholar
  5. 5.
    Balog, K., de Rijke, M.: Non-Local Evidence for Expert Finding. In: Proceedings of the 17th ACM conference on Conference on information and knowledge management (CIKM 2008), Napa Valley, California, USA, pp. 731–740 (2008)Google Scholar
  6. 6.
    Vercoustre, A., Thom, J.A., Pehcevski, J.: Entity Ranking in Wikipedia. In: Proceedings of the 2008 ACM symposium on Applied computing (SAC 2008), Fortaleza, Ceara, Brazil (2008)Google Scholar
  7. 7.
    Demartini, G., Firan, C.S., Iofciu, T.: L3S Research at INEX 2007: Query Expansion for Entity Ranking Using a Highly Accurate Ontology. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 252–263. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Tsikrika, T., Serdyukov, P., Rode, H., Westerveld, T., Aly, R., Hiemstra, D., de Vries, A.P.: Structured Document Retrieval, Multimedia Retrieval, and Entity Retrieval Using PF/Tijah. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 306–320. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jiepu Jiang
    • 1
  • Wei Lu
    • 1
  • Xianqian Rong
    • 1
  • Yangyan Gao
    • 1
  1. 1.Center for Studies of Information Resources, School of Information ManagementWuhan UniversityChina

Personalised recommendations