L3S at INEX 2008: Retrieving Entities Using Structured Information

  • Nick Craswell
  • Gianluca Demartini
  • Julien Gaugaz
  • Tereza Iofciu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5631)


Entity Ranking is a recently emerging search task in Information Retrieval. In Entity Ranking the goal is not finding documents matching the query words, but instead finding entities which match those requested in the query.

In this paper we focus on the Wikipedia corpus, interpreting it as a set of entities and propose algorithms for finding entities based on their structured representation for three different search tasks: entity ranking, list completion, and entity relation search. The main contribution is a methodology for indexing entities using a structured representation. Our approach focuses on creating an index of facts about entities for the different search tasks. More, we use the category structure information for improving the effectiveness of the List Completion task.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auer, S., Lehmann, J.: What Have Innsbruck and Leipzig in Common? Extracting Semantics from Wiki Content. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 503–517. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Demartini, G., Firan, C.S., Iofciu, T., Krestel, R., Nejdl, W.: A Model for Ranking Entities and Its Application to Wikipedia. In: LA-WEB (2008)Google Scholar
  3. 3.
    Demartini, G., Firan, C.S., Iofciu, T., Nejdl, W.: Semantically Enhanced Entity Ranking. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 176–188. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Ciaramita, M., Atserias, J., Zaragoza, H., Attardi, G.: Semantically Annotated Snapshot of the English Wikipedia. In: European Language Resources Association (ELRA) (ed.) Proceedings of the Sixth International Language Resources and Evaluation (LREC 2008), Marrakech, Morocco (May 2008)Google Scholar
  5. 5.
    Pehcevski, J., Vercoustre, A.-M., Thom, J.A.: Exploiting Locality of Wikipedia Links in Entity Ranking. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 258–269. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Schenkel, R., Suchanek, F.M., Kasneci, G.: YAWN: A Semantically Annotated Wikipedia XML Corpus. In: Kemper, A., Schöning, H., Rose, T., Jarke, M., Seidl, T., Quix, C., Brochhaus, C. (eds.) BTW. LNI, vol. 103, pp. 277–291. GI (2007)Google Scholar
  7. 7.
    Tsikrika, T., Serdyukov, P., Rode, H., Westerveld, T., Aly, R., Hiemstra, D., de Vries, A.P.: Structured Document Retrieval, Multimedia Retrieval, and Entity Ranking Using PF/Tijah. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 306–320. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Zaragoza, H., Rode, H., Mika, P., Atserias, J., Ciaramita, M., Attardi, G.: Ranking Very Many Typed Entities on Wikipedia. In: Silva, M.J., Laender, A.H.F., Baeza-Yates, R.A., McGuinness, D.L., Olstad, B., Olsen, Ø.H., Falcão, A.O. (eds.) CIKM, pp. 1015–1018. ACM, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nick Craswell
    • 1
  • Gianluca Demartini
    • 2
  • Julien Gaugaz
    • 2
  • Tereza Iofciu
    • 2
  1. 1.Microsoft Research CambridgeCambridgeUK
  2. 2.L3S Research CenterLeibniz Universität HannoverHannoverGermany

Personalised recommendations