Advertisement

Ontologies and Databases: The DL-Lite Approach

  • Diego Calvanese
  • Giuseppe De Giacomo
  • Domenico Lembo
  • Maurizio Lenzerini
  • Antonella Poggi
  • Mariano Rodriguez-Muro
  • Riccardo Rosati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5689)

Abstract

Ontologies provide a conceptualization of a domain of interest. Nowadays, they are typically represented in terms of Description Logics (DLs), and are seen as the key technology used to describe the semantics of information at various sites. The idea of using ontologies as a conceptual view over data repositories is becoming more and more popular, but for it to become widespread in standard applications, it is fundamental that the conceptual layer through which the underlying data layer is accessed does not introduce a significant overhead in dealing with the data. Based on these observations, in recent years a family of DLs, called DL-Lite, has been proposed, which is specifically tailored to capture basic ontology and conceptual data modeling languages, while keeping low complexity of reasoning and of answering complex queries, in particular when the complexity is measured w.r.t. the size of the data. In this article, we present a detailed account of the major results that have been achieved for the DL-Lite family. Specifically, we concentrate on \(DL-Lite_{\mathcal{A},id}\), an expressive member of this family, present algorithms for reasoning and query answering over \(DL-Lite_{\mathcal{A},id}\) ontologies, and analyze their computational complexity. Such algorithms exploit the distinguishing feature of the logics in the DL-Lite family, namely that ontology reasoning and answering unions of conjunctive queries is first-order rewritable, i.e., it can be delegated to a relational database management system. We analyze also the effect of extending the logic with typical DL constructs, and show that for most such extensions, the nice computational properties of the DL-Lite family are lost. We address then the problem of accessing relational data sources through an ontology, and present a solution to the notorious impedance mismatch between the abstract objects in the ontology and the values appearing in data sources. The solution exploits suitable mappings that create the objects in the ontology from the appropriate values extracted from the data sources. Finally, we discuss the QUONTO system that implements all the above mentioned solutions and is wrapped by the DIG-QUONTO server, thus providing a standard DL reasoner for \(DL-Lite_{\mathcal{A},id}\) with extended functionality to access external data sources.

Keywords

Description Logic Conjunctive Query Query Answering Atomic Concept Reasoning Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co., Reading (1995)zbMATHGoogle Scholar
  2. 2.
    Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri, M., Rosati, R.: QuOnto: Querying ontologies. In: Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 1670–1671 (2005)Google Scholar
  3. 3.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light of first-order logic. In: Proc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI 2007), pp. 361–366 (2007)Google Scholar
  4. 4.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. Technical Report BBKCS-09-03, School of Computer Science and Information Systems, Birbeck College, London (2009), http://www.dcs.bbk.ac.uk/research/techreps/2009/bbkcs-09-03.pdf
  5. 5.
    Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising tractable description logics. In: Proc. of the 14th Int. Symp. on Temporal Representation and Reasoning (TIME 2007), pp. 11–22 (2007)Google Scholar
  6. 6.
    Baader, F.: Augmenting concept languages by transitive closure of roles: An alternative to terminological cycles. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence, IJCAI 1991 (1991)Google Scholar
  7. 7.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  8. 8.
    Baader, F., Hladik, J., Lutz, C., Wolter, F.: From tableaux to automata for description logics. Fundamenta Informaticae 57, 1–33 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69(1), 5–40 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bechhofer, S., Möller, R., Crowther, P.: The DIG description logic interface. In: Proc. of the 2003 Description Logic Workshop (DL 2003). CEUR Electronic Workshop Proceedings, vol. 81, pp. 196–203 (2003), http://ceur-ws.org/
  11. 11.
    Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artificial Intelligence 168(1–2), 70–118 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Brachman, R.J., Levesque, H.J.: The tractability of subsumption in frame-based description languages. In: Proc. of the 4th Nat. Conf. on Artificial Intelligence (AAAI 1984), pp. 34–37 (1984)Google Scholar
  13. 13.
    Brachman, R.J., Levesque, H.J. (eds.): Readings in Knowledge Representation. Morgan Kaufmann, San Francisco (1985)zbMATHGoogle Scholar
  14. 14.
    Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge representation system. Cognitive Science 9(2), 171–216 (1985)CrossRefGoogle Scholar
  15. 15.
    Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge representation systems. J. of Artificial Intelligence Research 1, 109–138 (1993)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Calì, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: On the expressive power of data integration systems. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 338–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Calì, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in data integration systems. In: Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), pp. 16–21 (2003)Google Scholar
  18. 18.
    Calvanese, D., De Giacomo, G.: Expressive description logics. In: Baader, et al. (eds.) [7], ch. 5, pp. 178–218 (2003)Google Scholar
  19. 19.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Linking data to ontologies: The description logic DL-Lite A. In: Proc. of the 2nd Int. Workshop on OWL: Experiences and Directions (OWLED 2006). CEUR Electronic Workshop Proceedings, vol. 216 (2006), http://ceur-ws.org/
  20. 20.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R., Ruzzi, M.: Data integration through \({\textit{DL-lite}_{\mathcal A}}\) ontologies. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2008. LNCS, vol. 4925, pp. 26–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable description logics for ontologies. In: Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 602–607 (2005)Google Scholar
  22. 22.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. In: Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 260–270 (2006)Google Scholar
  23. 23.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: Effective first-order query processing in description logics. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), pp. 274–279 (2007)Google Scholar
  24. 24.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning 39(3), 385–429 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Path-based identification constraints in description logics. In: Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2008), pp. 231–241 (2008)Google Scholar
  26. 26.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: Reasoning in expressive description logics with fixpoints based on automata on infinite trees. In: Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), pp. 84–89 (1999)Google Scholar
  27. 27.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: Answering queries using views over description logics knowledge bases. In: Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000), pp. 386–391 (2000)Google Scholar
  28. 28.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: 2ATAs make DLs easy. In: Proc. of the 2002 Description Logic Workshop (DL 2002). CEUR Electronic Workshop Proceedings, vol. 53, pp. 107–118 (2002), http://ceur-ws.org/
  29. 29.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: Description logics for information integration. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS, vol. 2408, pp. 41–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D.: Reasoning in expressive description logics. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 23, vol. II, pp. 1581–1634. Elsevier Science Publishers, Amsterdam (2001)CrossRefGoogle Scholar
  31. 31.
    Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation formalisms. J. of Artificial Intelligence Research 11, 199–240 (1999)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proc. of the 9th ACM Symp. on Theory of Computing (STOC 1977), pp. 77–90 (1977)Google Scholar
  33. 33.
    Chen, C., Haarslev, V., Wang, J.: LAS: Extending Racer by a Large ABox Store. In: Proc. of the 2005 Description Logic Workshop (DL 2005). CEUR Electronic Workshop Proceedings, vol. 147 (2005), http://ceur-ws.org/
  34. 34.
    Cosmadakis, S.S., Kanellakis, P.C., Vardi, M.: Polynomial-time implication problems for unary inclusion dependencies. J. of the ACM 37(1), 15–46 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the update of description logic ontologies at the instance level. In: Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006), pp. 1271–1276 (2006)Google Scholar
  36. 36.
    De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the approximation of instance level update and erasure in description logics. In: Proc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI 2007), pp. 403–408 (2007)Google Scholar
  37. 37.
    Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology based access to distributed and semi-structured information. In: Meersman, R., Tari, Z., Stevens, S. (eds.) Database Semantic: Semantic Issues in Multimedia Systems, ch. 20, pp. 351–370. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  38. 38.
    Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept languages. Information and Computation 134, 1–58 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Deduction in concept languages: From subsumption to instance checking. J. of Logic and Computation 4(4), 423–452 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-completeness. W. H. Freeman and Company, San Francisco (1979)zbMATHGoogle Scholar
  41. 41.
    Goasdoue, F., Lattes, V., Rousset, M.-C.: The use of CARIN language and algorithms for information integration: The Picsel system. Int. J. of Cooperative Information Systems 9(4), 383–401 (2000)CrossRefGoogle Scholar
  42. 42.
    Gruber, T.: Towards principles for the design of ontologies used for knowledge sharing. Int. J. of Human and Computer Studies 43(5/6), 907–928 (1995)CrossRefGoogle Scholar
  43. 43.
    Gruber, T.R.: A translation approach to portable ontology specification. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  44. 44.
    Guarino, N.: Formal ontology in information systems. In: Proc. of the Int. Conf. on Formal Ontology in Information Systems (FOIS 1998). Frontiers in Artificial Intelligence, pp. 3–15. IOS Press, Amsterdam (1998)Google Scholar
  45. 45.
    Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 701–705. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  46. 46.
    Halevy, A.Y.: Answering queries using views: A survey. J. of Very Large Database 10(4), 270–294 (2001)CrossRefzbMATHGoogle Scholar
  47. 47.
    Heflin, J., Hendler, J.: A portrait of the Semantic Web in action. IEEE Intelligent Systems 16(2), 54–59 (2001)CrossRefGoogle Scholar
  48. 48.
    Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Feier, C., Hench, G., Wetzstein, B., Keller, U.: Ontology reasoning with large data repositories. In: Hepp, M., De Leenheer, P., de Moor, A., Sure, Y. (eds.) Ontology Management, Semantic Web, Semantic Web Services, and Business Applications. Semantic Web And Beyond Computing for Human Experience, vol. 7, pp. 89–128. Springer, Heidelberg (2008)Google Scholar
  49. 49.
    Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc. of the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1998), pp. 636–647 (1998)Google Scholar
  50. 50.
    Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: DL reasoning with large numbers of individuals. In: Proc. of the 2004 Description Logic Workshop (DL 2004). CEUR Electronic Workshop Proceedings, vol. 104 (2004), http://ceur-ws.org/
  51. 51.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: The making of a web ontology language. J. of Web Semantics 1(1), 7–26 (2003)CrossRefGoogle Scholar
  52. 52.
    Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierarchies. J. of Logic and Computation 9(3), 385–410 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Horrocks, I., Sattler, U.: A tableau decision procedure for \(\mathcal{SHOIQ}\). J. of Automated Reasoning 39(3), 249–276 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Hull, R.: A survey of theoretical research on typed complex database objects. In: Paredaens, J. (ed.) Databases, pp. 193–256. Academic Press, London (1988)Google Scholar
  55. 55.
    Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive description logics. In: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pp. 466–471 (2005)Google Scholar
  56. 56.
    Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. of Computer and System Sciences 28(1), 167–189 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Kolaitis, P.G.: Schema mappings, data exchange, and metadata management. In: Proc. of the 24rd ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2005), pp. 61–75 (2005)Google Scholar
  58. 58.
    Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 1998), pp. 205–213 (1998)Google Scholar
  59. 59.
    Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F., Zakharyaschev, M.: Minimal module extraction from DL-Lite ontologies using QBF solvers. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence, IJCAI 2009 (2009)Google Scholar
  60. 60.
    Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between DL-Lite ontologies? In: Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2008), pp. 285–295 (2008)Google Scholar
  61. 61.
    Kozen, D.: Theory of Computation. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  62. 62.
    Krisnadhi, A., Lutz, C.: Data complexity in the \(\mathcal{EL}\) family of description logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 333–347. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  63. 63.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of the 21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002), pp. 233–246 (2002)Google Scholar
  64. 64.
    Libkin, L.: Data exchange and incomplete information. In: Proc. of the 25th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2006), pp. 60–69 (2006)Google Scholar
  65. 65.
    Maedche, A.: Ontology learning for the Semantic Web. Kluwer Academic Publishers, Dordrecht (2003)zbMATHGoogle Scholar
  66. 66.
    Meseguer, J., Qian, X.: A logical semantics for object-oriented databases. In: Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pp. 89–98 (1993)Google Scholar
  67. 67.
    Minsky, M.: A framework for representing knowledge. In: Haugeland, J. (ed.) Mind Design. The MIT Press, Cambridge (1981); A longer version appeared in The Psychology of Computer Vision (1975), Republished in [13]Google Scholar
  68. 68.
    Möller, R., Haarslev, V.: Description logic systems. In: Baader, et al. (eds.) [7], ch. 8, pp. 282–305Google Scholar
  69. 69.
    Nebel, B.: Computational complexity of terminological reasoning in BACK. Artificial Intelligence 34(3), 371–383 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Noy, N.F.: Semantic integration: A survey of ontology-based approaches. SIGMOD Record 33(4), 65–70 (2004)CrossRefGoogle Scholar
  71. 71.
    Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expressive description logics via tableaux. J. of Automated Reasoning 41(1), 61–98 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Pan, J.Z., Stamou, G.B., Stoilos, G., Thomas, E.: Expressive querying over fuzzy DL-Lite ontologies. In: Proc. of the 2007 Description Logic Workshop (DL 2007). CEUR Electronic Workshop Proceedings, vol. 250 (2007), http://ceur-ws.org/
  73. 73.
    Papadimitriou, C.H.: Computational Complexity. Addison Wesley Publ. Co., Reading (1994)zbMATHGoogle Scholar
  74. 74.
    Patel-Schneider, P.F., McGuinness, D.L., Brachman, R.J., Resnick, L.A., Borgida, A.: The CLASSIC knowledge representation system: Guiding principles and implementation rational. SIGART Bull. 2(3), 108–113 (1991)CrossRefGoogle Scholar
  75. 75.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. on Data Semantics X, 133–173 (2008)zbMATHGoogle Scholar
  76. 76.
    Poggi, A., Rodriguez, M., Ruzzi, M.: Ontology-based database access with DIG-Mastro and the OBDA Plugin for Protégé. In: Clark, K., Patel-Schneider, P.F. (eds.) Proc. of the 4th Int. Workshop on OWL: Experiences and Directions, OWLED 2008 DC (2008)Google Scholar
  77. 77.
    Racer Systems GmbH & Co. KG. Release notes for RacerPro 1.9.2 beta, http://www.sts.tu-harburg.de/~r.f.moeller/racer/Racer-1-9-2-beta-Release-Notes/release-notes-1-9-2se8.html (last access, July 2008)
  78. 78.
    Reingold, O.: Undirected connectivity in log-space. J. of the ACM 55(4) (2008)Google Scholar
  79. 79.
    Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Databases, pp. 119–140. Plenum Publ. Co., New York (1978)Google Scholar
  80. 80.
    Rodríguez-Muro, M., Calvanese, D.: An OBDA extension to the DIG 1.1 Interface (July 2008), http://www.inf.unibz.it/~rodriguez/OBDA/dig-11-obda/
  81. 81.
    Rodriguez-Muro, M., Calvanese, D.: Towards an open framework for ontology based data access with Protégé and DIG 1.1. In: Proc. of the 5th Int. Workshop on OWL: Experiences and Directions, OWLED 2008 (2008)Google Scholar
  82. 82.
    Rodriguez-Muro, M., Lubyte, L., Calvanese, D.: Realizing ontology based data access: A plug-in for Protégé. In: Proc. of the ICDE Workshop on Information Integration Methods, Architectures, and Systems (IIMAS 2008), pp. 286–289. IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  83. 83.
    Schild, K.: A correspondence theory for terminological logics: Preliminary report. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), pp. 466–471 (1991)Google Scholar
  84. 84.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Sirin, E., Parsia, B.: Pellet system description. In: Proc. of the 2006 Description Logic Workshop (DL 2006). CEUR Electronic Workshop Proceedings, vol. 189 (2006), http://ceur-ws.org/
  86. 86.
    Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Technical report, University of Maryland Institute for Advanced Computer Studies, UMIACS (2005)Google Scholar
  87. 87.
    Straccia, U.: Towards top-k query answering in description logics: The case of DL-lite. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS, vol. 4160, pp. 439–451. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  88. 88.
    Uschold, M., Grüninger, M.: Ontologies and semantics for seamless connectivity. SIGMOD Record 33(4), 58–64 (2004)CrossRefGoogle Scholar
  89. 89.
    van der Meyden, R.: Logical approaches to incomplete information. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, pp. 307–356. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  90. 90.
    Vardi, M.Y.: The complexity of relational query languages. In: Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC 1982), pp. 137–146 (1982)Google Scholar
  91. 91.
    Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  92. 92.
    Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. of Computer and System Sciences 32, 183–221 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  93. 93.
    Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Diego Calvanese
    • 1
  • Giuseppe De Giacomo
    • 2
  • Domenico Lembo
    • 2
  • Maurizio Lenzerini
    • 2
  • Antonella Poggi
    • 2
  • Mariano Rodriguez-Muro
    • 1
  • Riccardo Rosati
    • 2
  1. 1.KRDB Research CentreFree University of Bozen-BolzanoItaly
  2. 2.Dipartimento di Informatica e SistemisticaSapienza Università di RomaItaly

Personalised recommendations