Advertisement

Answer Set Programming: A Primer

  • Thomas Eiter
  • Giovambattista Ianni
  • Thomas Krennwallner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5689)

Abstract

Answer Set Programming (ASP) is a declarative problem solving paradigm, rooted in Logic Programming and Nonmonotonic Reasoning, which has been gaining increasing attention during the last years. This article is a gentle introduction to the subject; it starts with motivation and follows the historical development of the challenge of defining a semantics for logic programs with negation. It looks into positive programs over stratified programs to arbitrary programs, and then proceeds to extensions with two kinds of negation (named weak and strong negation), and disjunction in rule heads. The second part then considers the ASP paradigm itself, and describes the basic idea. It shows some programming techniques and briefly overviews Answer Set solvers. The third part is devoted to ASP in the context of the Semantic Web, presenting some formalisms and mentioning some applications in this area. The article concludes with issues of current and future ASP research.

Keywords

Logic Program Logic Programming Description Logic Stable Model Strong Negation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alferes, J.J., Amador, R., May, W.: A general language for evolution and reactivity in the semantic web. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 101–115. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Analyti, A., Antoniou, G., Damásio, C.V.: A principled framework for modular web rule bases and its semantics. In: Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning (KR 2008), AAAI Press, Menlo Park (2008)Google Scholar
  3. 3.
    Analyti, A., Antoniou, G., Damásio, C.V., Wagner, G.: Stable Model Theory for Extended RDF Ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 21–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Apt, K., Blair, H., Walker, A.: Towards a Theory of Declarative Knowledge. In: Minker [93], pp. 89–148Google Scholar
  5. 5.
    Apt, K., Bol, N.: Logic programming and negation: A survey. Journal of Logic Programming 19/20, 9–71 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Arenas, M., Gutierrez, C., Pérez, J.: Foundations of RDF databases. In: Franconi and Tessaris [56]Google Scholar
  7. 7.
    Asparagus homepage (2005), http://asparagus.cs.uni-potsdam.de/
  8. 8.
    Baader, F.: Description logics. In: Franconi and Tessaris [56]Google Scholar
  9. 9.
    Balduccini, M.: Modules and Signature Declarations for A-Prolog: Progress Report. In: de Vos and Schaub [30], http://sea07.cs.bath.ac.uk/downloads/sea07-proceedings.pdf
  10. 10.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Baral, C., Dzifcak, J., Takahashi, H.: Macros, Macro Calls and Use of Ensembles in Modular Answer Set Programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 376–390. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Baselice, S., Bonatti, P.A., Criscuolo, G.: On finitely recursive programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 89–103. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals of Mathematics and Artificial Intelligence 12, 53–87 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bidoit, N.: Negation in rule-based database languages: A survey. Theor. Comput. Sci. 78(1), 3–83 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Baselice, S., Bonatti, P.A.: Composing normal programs with function symbols. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 425–439. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Bonatti, P.A.: Reasoning with infinite stable models. Artificial Intelligence 156(1), 75–111 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Buccafurri, F., Faber, W., Leone, N.: Disjunctive logic programs with inheritance. Theory and Practice of Logic Programming 2(3) (2002)Google Scholar
  18. 18.
    Buccafurri, F., Leone, N., Rullo, P.: Strong and Weak Constraints in Disjunctive Datalog. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS (LNAI), vol. 1265, pp. 2–17. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  19. 19.
    Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value invention in logic programming. Annals of Mathematics and Artificial Intelligence 50(3-4), 333–361 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: Theory and Implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Calimeri, F., Ianni, G.: Template programs for Disjunctive Logic Programming: An operational semantics. AI Communications 19(3), 193–206 (2006)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Chen, W., Kifer, M., Warren, D.S.: Hilog: A foundation for higher-order logic programming. Journal of Logic Programming 15(3), 187–230 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York (1978)CrossRefGoogle Scholar
  24. 24.
    Viegas Damásio, C., Analyti, A., Antoniou, G., Wagner, G.: Supporting open and closed world reasoning on the web. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 149–163. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic Programming. ACM Computing Surveys 33(3), 374–425 (2001)CrossRefGoogle Scholar
  26. 26.
    Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic programming revisited. In: Hill, P., Warren, D. (eds.) Proceedings 25th International Conference on Logic Programming (ICLP 2009). LNCS, vol. 5649, pp. 145–159. Springer, Heidelberg (2009)Google Scholar
  27. 27.
    de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: On representational issues about combinations of classical theories with nonmonotonic rules. In: Lang, J., Lin, F., Wang, J. (eds.) KSEM 2006. LNCS, vol. 4092, pp. 1–22. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified equilibrium logic and hybrid rules. In: Marchiori, M., Pan, J.Z., de Marie, C.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 58–72. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    de la Banda, M.G., Pontelli, E. (eds.): ICLP 2008. LNCS, vol. 5366. Springer, Heidelberg (2008)Google Scholar
  30. 30.
    de Vos, M., Schaub, T. (eds.): Informal Proceedings of the 1st International Workshop on Software Engineering for Answer Set Programming, Tempe, AZ, USA (May 2007), http://sea07.cs.bath.ac.uk/downloads/sea07-proceedings.pdf
  31. 31.
    Dix, J.: A Classification Theory of Semantics of Normal Logic Programs: I. Strong Properties. Fundam. Inform. 22(3), 227–255 (1995)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Dix, J.: A Classification Theory of Semantics of Normal Logic Programs: II. Weak Properties. Fundam. Inform. 22(3), 257–288 (1995)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Małuszyński, J.: Hybrid reasoning with rules and ontologies. In: Bry, F., Małuszyński, J. (eds.) Semantic Techniques for the Web: The REWERSE perspective, ch. 1. LNCS, vol. 5500, p. 50. Springer, Heidelberg (to appear, 2009)CrossRefGoogle Scholar
  34. 34.
    Eiter, T.: Answer set programming for the Semantic Web (tutorial). In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 23–26. Springer, Heidelberg (2007); Slides, http://www.dcc.fc.up.pt/iclp07/eiter.pdf CrossRefGoogle Scholar
  35. 35.
    Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity results for answer set programming with bounded predicate arities and implications. Annals of Mathematics and Artificial Intelligence 51(2-4), 123–165 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative problem-solving using the DLV system. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 79–103. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  37. 37.
    Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 87–99. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  38. 38.
    Eiter, T., Fink, M., Woltran, S.: Semantical Characterizations and Complexity of Equivalences in Answer Set Programming. ACM Trans. Comput. Log. 8(3), Article 17 (53 + 11) (2007) Google Scholar
  39. 39.
    Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Programming: Propositional Case. Annals of Mathematics and Artificial Intelligence 15(3/4), 289–323 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Eiter, T., Gottlob, G., Veith, H.: Modular Logic Programming and Generalized Quantifiers. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 290–309. Springer, Heidelberg (1997)Google Scholar
  41. 41.
    Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and Ontologies for the Semantic Web. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 1–53. Springer, Heidelberg (2008); Slides, http://rease.semanticweb.org/ CrossRefGoogle Scholar
  42. 42.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for description logic programs in the Semantic Web. Technical Report INFSYS RR-1843-09-01, Institut für Informationssysteme, Technische Universität Wien, A-1040 Vienna, Austria (March 2009)Google Scholar
  43. 43.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set Programming with Description Logics for the Semantic Web. Artificial Intelligence 172(12-13), 1495–1539 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with rules and ontologies. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web 2006. LNCS, vol. 4126, pp. 93–127. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  45. 45.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order Reasoning and External Evaluations in Answer Set Programming. In: International Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, UK, August 2005, pp. 90–96 (2005)Google Scholar
  46. 46.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declarative rules with external evaluations for semantic web reasoning. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  47. 47.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H., Wang, K.: Forgetting in managing rules and ontologies. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006), Hongkong, pp. 411–419. IEEE Computer Society, Los Alamitos (2006); preliminary version at ALPSWS 2006Google Scholar
  48. 48.
    Eiter, T., Leone, N., Pearce, D.: Assumption Sets for Extended Logic Programs. In: Gerbrandy, J., Marx, M., de Rijke, M., Venema, Y. (eds.) JFAK. Essays Dedicated to Johan van Benthem on the Occasion of his 50th Birthday. Amsterdam University Press (1999), http://www.kr.tuwien.ac.at/staff/eiter/et-archive/jfak.pdf
  49. 49.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the Semantic Web. In: Dubois, D., Welty, C., Williams, M.-A. (eds.) Proceedings Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR 2004), Whistler, British Columbia, Canada, pp. 141–151. Morgan Kaufmann, San Francisco (2004)Google Scholar
  50. 50.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics for description logic programs in the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  51. 51.
    Eiter, T., Šimkus, M.: Bidirectional answer set programs with function symbols. In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009). AAAI Press, Menlo Park (2009)Google Scholar
  52. 52.
    Faber, W.: Enhancing Efficiency and Expressiveness in Answer Set Programming Systems. PhD thesis, Institut für Informationssysteme, Technische Universität Wien (2002)Google Scholar
  53. 53.
    Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of aggregate functions in the DLV system. Theory and Practice of Logic Programming 8(5-6), 545–580 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Veloso, M.M. (ed.) IJCAI, pp. 372–379 (2007)Google Scholar
  55. 55.
    Ferraris, P., Lifschitz, V.: Mathematical foundations of answer set programming. In: We Will Show Them! Essays in Honour of Dov Gabbay, vol. 1, pp. 615–664. College Publications (2005)Google Scholar
  56. 56.
    Franconi, E., Tessaris, S. (eds.): Reasoning Web 2009. LNCS. Springer, Heidelberg (2009)Google Scholar
  57. 57.
    Friedrich, G., et al.: Model-based repair of web service processes. Technical Report 2008/001, ISBI research group, University of Klagenfurt (2008), http://test-informations.info/
  58. 58.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an Incremental ASP Solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  59. 59.
    Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczynski, M.: The First Answer Set Programming System Competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 3–17. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  60. 60.
    Gelfond, M.: Representing Knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 413–451. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  61. 61.
    Gelfond, M.: Answer sets. In: van Harmelen, B.P.F., Lifschitz, V. (eds.) Handbook of Knowledge Representation, ch. 7, pp. 285–316. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  62. 62.
    Gelfond, M., Leone, N.: Logic programming and knowledge representation - the a-prolog perspective. Artificial Intelligence 138(1-2), 3–38 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Proceedings Fifth Intl. Conference and Symposium Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  64. 64.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing 9, 365–385 (1991)zbMATHCrossRefGoogle Scholar
  65. 65.
    Heymans, S., de Bruijn, J., Predoiu, L., Feier, C., Nieuwenborgh, D.V.: Guarded hybrid knowledge bases. Theory and Practice of Logic Programming 8(3), 411–429 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Conceptual logic programs. Annals of Mathematics and Artificial Intelligence 47(1-2), 103–137 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Open answer set programming for the Semantic Web. J. Applied Logic 5(1), 144–169 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Heymans, S., Toma, I.: Ranking Services Using Fuzzy HEX-Programs. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 181–196. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  69. 69.
    Hoehndorf, R., Loebe, F., Kelso, J., Herre, H.: Representing default knowledge in biomedical ontologies: Application to the integration of anatomy and phenotype ontologies. BMC Bioinformatics 8(1), 377 (2007)CrossRefGoogle Scholar
  70. 70.
    Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive datalog programs. In: Proceedings of the Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR 2004), Whistler, Canada, pp. 152–162 (2004)Google Scholar
  71. 71.
    Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: A Rule System for Querying Persistent RDFS Data. In: Arroyo, L., Traverso, P. (eds.) The Semantic Web: Research and Applications, 6th European Semantic Web Conference, ESWC 2009, Heraklion, Greece. LNCS, vol. 5554, pp. 857–862. Springer, Heidelberg (2009)Google Scholar
  72. 72.
    Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity Aspects of Disjunctive Stable Models. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 175–187. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  73. 73.
    Kowalski, R.: Algorithm = Logic + Control. Commun. ACM 22(7), 424–436 (1979)zbMATHCrossRefGoogle Scholar
  74. 74.
    Lee, J.: A model-theoretic counterpart of loop formulas. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 503–508. Professional Book Center (2005)Google Scholar
  75. 75.
    Lee, J., Lifschitz, V.: Loop Formulas for Disjunctive Logic Programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  76. 76.
    Lef‘evre, C., Nicolas, P.: Integrating grounding in the search process for answer set computing. In: ASPOCP: Answer Set Programming and Other Constraint Paradigms, pp. 89–103 (2008)Google Scholar
  77. 77.
    Leone, N., Faber, W.: The DLV project: A tour from theory and research to applications and market. In: de la Banda and Pontelli [29], pp. 53–68Google Scholar
  78. 78.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowledge Representation and Reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  79. 79.
    Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint Semantics and Computation. Information and Computation 135(2), 69–112 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Proceedings IJCAI 1991, pp. 381–386 (1991)Google Scholar
  81. 81.
    Lifschitz, V.: Answer set planning. In: ICLP, pp. 23–37 (1999)Google Scholar
  82. 82.
    Lifschitz, V.: Answer Set Programming and Plan Generation. Artificial Intelligence 138, 39–54 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  84. 84.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2(4), 526–541 (2001)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Lifschitz, V., Razborov, A.A.: Why are there so many loop formulas? ACM Trans. Comput. Log. 7(2), 261–268 (2006)MathSciNetCrossRefGoogle Scholar
  86. 86.
    Lifschitz, V., Turner, H.: Splitting a Logic Program. In: Van Hentenryck, P. (ed.) Proceedings of the 11th International Conference on Logic Programming (ICLP 1994), Santa Margherita Ligure, Italy, pp. 23–37. MIT Press, Cambridge (1994)Google Scholar
  87. 87.
    Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In: AAAI/IAAI, p. 112 (2002)Google Scholar
  88. 88.
    Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reasoning 45(2), 288–307 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncertainty and fuzzy vagueness. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS, vol. 4724, pp. 187–198. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  90. 90.
    Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics in dlv: Implementation, evaluation, and comparison to qbf solvers. J. Algorithms 63(1-3), 70–89 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Marek, V.W., Truszczyński, M.: Autoepistemic Logic. Journal of the ACM 38(3), 588–619 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming Paradigm. In: Apt, K., Marek, V.W., Truszczyński, M., Warren, D.S. (eds.) The Logic Programming Paradigm – A 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  93. 93.
    Minker, J. (ed.): Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann, Washington (1988)zbMATHGoogle Scholar
  94. 94.
    Minker, J.: Logic and Databases: A 20 Year Retrospective. In: Pedreschi, D., Zaniolo, C. (eds.) LID 1996. LNCS, vol. 1154, pp. 3–57. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  95. 95.
    Motik, B., Rosati, R.: A faithful integration of description logics with logic programming. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence IJCAI 2007, pp. 477–482 (2007)Google Scholar
  96. 96.
    Niemelä, I.: Logic Programming with Stable Model Semantics as Constraint Programming Paradigm. Annals of Mathematics and Artificial Intelligence 25(3–4), 241–273 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Niemelä, I. (ed.): Language Extensions and Software Engineering for ASP. Technical Report WP3, Working Group on Answer Set Programming (WASP), IST-FET-2001-37004 (September 2005), http://www.tcs.hut.fi/Research/Logic/wasp/wp3/wasp-wp3-web/
  98. 98.
    Nieuwenborgh, D.V., Cock, M.D., Vermeir, D.: Computing Fuzzy Answer Sets Using dlvhex. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 449–450. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  99. 99.
    Nieuwenborgh, D.V., Eiter, T., Vermeir, D.: Conditional Planning with External Functions. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 214–227. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  100. 100.
    Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for Smodels programs. Theory and Practice of Logic Programming 8(5–6), 717–761 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: Gasp: Answer set programming with lazy grounding. In: LaSh 2008: Logic And Search - Computation of structures from declarative descriptions (2008)Google Scholar
  102. 102.
    Papadimitriou, C.H.: Computational Complexity. Addison Wesley Longman, Amsterdam (1994)zbMATHGoogle Scholar
  103. 103.
    Pearce, D.: Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47(1-2), 3–41 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer set programs. In: de la Banda and Pontelli [29], pp. 546–560Google Scholar
  105. 105.
    Polleres, A.: From SPARQL to rules (and back). In: Proceedings of the 16th International Conference on World Wide Web (WWW), pp. 787–796. ACM, New York (2007)CrossRefGoogle Scholar
  106. 106.
    Polleres, A., Feier, C., Harth, A.: Rules with Contextually Scoped Negation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 332–347. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  107. 107.
    Pontelli, E., Son, T.C., Baral, C.: A framework for composition and inter-operation of rules in the semantic web. In: Eiter, T., Franconi, E., Hodgson, R., Stephens, S. (eds.) RuleML, pp. 39–50. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  108. 108.
    Provetti, A., Son, T.C. (eds.): Answer Set Programming, Towards Efficient and Scalable Knowledge Representation and Reasoning, Proceedings of the 1st Intl. ASP 2001 Workshop, Stanford (March 26-28, 2001)Google Scholar
  109. 109.
    Przymusinski, T.C.: On the Declarative Semantics of Deductive Databases and Logic Programs. In: Minker [93], pp. 193–216Google Scholar
  110. 110.
    Rainer, A.: Web Service Composition under Answer Set Programming. In: Proc. KI 2005 Workshop ”Planen, Scheduling und Konfigurieren, Entwerfen”, PuK 2005 (2005)Google Scholar
  111. 111.
    Reiter, R.: On Closed-World Databases. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 55–76. Plenum Press, New York (1978)CrossRefGoogle Scholar
  112. 112.
    Reiter, R.: A Logic for Default Reasoning. Artificial Intelligence 13(1–2), 81–132 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Ricca, F., Gallucci, L., Schindlauer, R., Dell’armi, T., Grasso, G., Leone, N.: OntoDLV: An ASP-based System for Enterprise Ontologies. Journal of Logic and Computation (2008), doi:10.1093/logcom/exn042Google Scholar
  114. 114.
    Rosati, R.: \(\mathcal{DL}\text{+}log\): Tight Integration of Description Logics and Disjunctive Datalog. In: Proceedings of the Tenth International Conference on Principles of Knowledge Representation and Reasoning KR 2006, pp. 68–78. AAAI Press, Menlo Park (2006)Google Scholar
  115. 115.
    Ross, K.A.: Modular stratification and magic sets for datalog programs with negation. Journal of the ACM 41(6), 1216–1266 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Šimkus, M., Eiter, T.: FDNC: Decidable non-monotonic disjunctive logic programs with function symbols. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 514–530. Springer, Heidelberg (2007); Extended Paper to appear in ACM Trans. Computational LogicCrossRefGoogle Scholar
  117. 117.
    Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Swift, T.: Deduction in Ontologies via ASP. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 275–288. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  119. 119.
    Syrjänen, T.: Omega-restricted logic programs. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS, vol. 2173, pp. 267–279. Springer, Heidelberg (2001)Google Scholar
  120. 120.
    Syrjänen, T., Niemelä, I.: The smodels system. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS, vol. 2173, pp. 434–438. Springer, Heidelberg (2001)Google Scholar
  121. 121.
    Tari, L., Baral, C., Anwar, S.: A Language for Modular Answer Set Programming: Application to ACC Tournament Scheduling. In: Proceedings of the 3rd International ASP 2005 Workshop, Bath, UK, July 2005. CEUR Workshop Proceedings, vol. 142, pp. 277–293. CEUR WS (2005)Google Scholar
  122. 122.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General Logic Programs. Journal of the ACM 38(3), 620–650 (1991)MathSciNetzbMATHGoogle Scholar
  123. 123.
    Woltran, S.: A common view on strong, uniform, and other notions of equivalence in answer-set programming. Theory and Practice of Logic Programming 8(2), 217–234 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    Woltran, S. (ed.): Answer Set Programming: Model Applications and Proofs-of-Concept. Technical Report WP5, Working Group on Answer Set Programming (WASP), IST-FET-2001-37004 (July 2005), http://www.kr.tuwien.ac.at/projects/WASP/report.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Eiter
    • 1
  • Giovambattista Ianni
    • 2
  • Thomas Krennwallner
    • 1
  1. 1.Institut für InformationssystemeTechnische Universität WienViennaAustria
  2. 2.Dipartimento di MatematicaUniversitá della CalabriaRendeItaly

Personalised recommendations