Abstract

Description Logics (DLs) are a well-investigated family of logic-based knowledge representation formalisms, which can be used to represent the conceptual knowledge of an application domain in a structured and formally well-understood way. They are employed in various application domains, such as natural language processing, configuration, and databases, but their most notable success so far is the adoption of the DL-based language OWL as standard ontology language for the semantic web.

This article concentrates on the problem of designing reasoning procedures for DLs. After a short introduction and a brief overview of the research in this area of the last 20 years, it will on the one hand present approaches for reasoning in expressive DLs, which are the foundation for reasoning in the Web ontology language OWL DL. On the other hand, it will consider tractable reasoning in the more light-weight DL \(\mathcal{EL}\), which is employed in bio-medical ontologies, and which is the foundation for the OWL 2 profile OWL 2 EL.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri, M., Rosati, R.: Quonto: Querying ontologies. In: Veloso, M.M., Kambhampati, S. (eds.) Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 1670–1671. AAAI Press/The MIT Press (2005)Google Scholar
  2. 2.
    Areces, C., de Rijke, M., de Nivelle, H.: Resolution in modal, description and hybrid logic. J. of Logic and Computation 11(5), 717–736 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baader., F.: Augmenting concept languages by transitive closure of roles: An alternative to terminological cycles. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence, IJCAI 1991 (1991)Google Scholar
  4. 4.
    Baader, F.: Using automata theory for characterizing the semantics of terminological cycles. Ann. of Mathematics and Artificial Intelligence 18, 175–219 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Baader, F.: Description logic terminology. In: [11], pp. 485–495 (2003)Google Scholar
  6. 6.
    Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 325–330. Morgan Kaufmann, Los Altos (2003)Google Scholar
  7. 7.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), Edinburgh, UK, pp. 364–369. Morgan Kaufmann, Los Altos (2005)Google Scholar
  8. 8.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope further. In: Clark, K., Patel-Schneider, P.F. (eds.) Proceedings of the Fifth International Workshop on OWL: Experiences and Directions (OWLED 2008), Karlsruhe, Germany (2008)Google Scholar
  9. 9.
    Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts. Artificial Intelligence 88(1–2), 195–213 (1996)CrossRefMATHGoogle Scholar
  10. 10.
    Baader, F., Bürckert, H.-J., Nebel, B., Nutt, W., Smolka, G.: On the expressivity of feature logics with negation, functional uncertainty, and sort equations. J. of Logic, Language and Information 2, 1–18 (1993)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  12. 12.
    Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.-J.: An empirical analysis of optimization techniques for terminological representation systems or: Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on Knowledge Base Management 4, 109–132 (1994)Google Scholar
  13. 13.
    Baader, F., Hladik, J., Lutz, C., Wolter, F.: From tableaux to automata for description logics. Fundamenta Informaticae 57(2–4), 247–279 (2003)MathSciNetMATHGoogle Scholar
  14. 14.
    Baader, F., Hollunder, B.: A terminological knowledge representation system with complete inference algorithm. In: Boley, H., Richter, M.M. (eds.) PDK 1991. LNCS (LNAI), vol. 567, pp. 67–86. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  15. 15.
    Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks in Information Systems, pp. 3–28. Springer, Berlin (2003)Google Scholar
  16. 16.
    Baader, F., Horrocks, I., Sattler, U.: Description logics. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 135–179. Elsevier, Amsterdam (2007)Google Scholar
  17. 17.
    Baader, F., Küsters, R., Molitor, R.: Structural subsumption considered from an automata theoretic point of view. In: Proc. of the 1998 Description Logic Workshop (DL 1998). CEUR Electronic Workshop Proceedings (1998), http://ceur-ws.org/Vol-11/
  18. 18.
    Baader, F., Lutz, C.: Description logic. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) The Handbook of Modal Logic, pp. 757–820. Elsevier, Amsterdam (2006)Google Scholar
  19. 19.
    Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 287–291. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Baader, F., Narendran, P.: Unification of concepts terms in description logics. J. of Symbolic Computation 31(3), 277–305 (2001)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Baader, F., Nutt, W.: Basic description logics. In: [11], pp. 43–95 (2003)Google Scholar
  22. 22.
    Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \({{\mathcal{EL}}^+}\). In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS, vol. 4667, pp. 52–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69, 5–40 (2001)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the description logic \(\mathcal{EL}^+\). In: Proceedings of the International Conference on Representing and Sharing Knowledge Using SNOMED (KR-MED 2008), Phoenix, Arizona (2008)Google Scholar
  25. 25.
    Baader, F., Tobies, S.: The inverse method implements the automata approach for modal satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 92–106. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Bernholtz, O., Grumberg, O.: Branching time temporal logic and amorphous tree automata. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 262–277. Springer, Heidelberg (1993)Google Scholar
  27. 27.
    Blackburn, P., de Rijke, M., de Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  28. 28.
    Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1–2), 353–367 (1996)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Brachman, R.J.: “Reducing” CLASSIC to practice: Knowledge representation meets reality. In: Proc. of the 3rd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1992), pp. 247–258. Morgan Kaufmann, Los Altos (1992)Google Scholar
  30. 30.
    Brachman, R.J., Levesque, H.J.: The tractability of subsumption in frame-based description languages. In: Proc. of the 4th Nat. Conf. on Artificial Intelligence (AAAI 1984), pp. 34–37 (1984)Google Scholar
  31. 31.
    Brachman, R.J., Levesque, H.J.: Readings in Knowledge Representation. Morgan Kaufmann, Los Altos (1985)MATHGoogle Scholar
  32. 32.
    Brachman, R.J., Nardi, D.: An introduction to description logics. In: [11], pp. 1–40 (2003)Google Scholar
  33. 33.
    Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge representation system. Cognitive Science 9(2), 171–216 (1985)CrossRefGoogle Scholar
  34. 34.
    Brandt., S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.) Proc. of the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004), pp. 298–302 (2004)Google Scholar
  35. 35.
    Bresciani, P., Franconi, E., Tessaris, S.: Implementing and testing expressive description logics: Preliminary report. In: Proc. of the 1995 Description Logic Workshop (DL 1995), pp. 131–139 (1995)Google Scholar
  36. 36.
    Buchheit, M., Donini, F.M., Nutt, W., Schaerf, A.: A refined architecture for terminological systems: Terminology = schema + views. Artificial Intelligence 99(2), 209–260 (1998)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological knowledge representation systems. J. of Artificial Intelligence Research 1, 109–138 (1993)MathSciNetMATHGoogle Scholar
  38. 38.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable description logics for ontologies. In: Veloso, M.M., Kambhampati, S. (eds.) Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 602–607. AAAI Press/The MIT Press (2005)Google Scholar
  39. 39.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning 39(3), 385–429 (2007)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query containment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 1998), pp. 149–158 (1998)Google Scholar
  41. 41.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: Reasoning in expressive description logics with fixpoints based on automata on infinite trees. In: Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), pp. 84–89 (1999)Google Scholar
  42. 42.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description logic framework for information integration. In: Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 2–13 (1998)Google Scholar
  43. 43.
    De Giacomo, G.: Decidability of Class-Based Knowledge Representation Formalisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza” (1995)Google Scholar
  44. 44.
    De Giacomo, G., Lenzerini, M.: Boosting the correspondence between description logics and propositional dynamic logics. In: Proc. of the 12th Nat. Conf. on Artificial Intelligence (AAAI 1994), pp. 205–212. AAAI Press/The MIT Press (1994)Google Scholar
  45. 45.
    De Giacomo, G., Lenzerini, M.: Concept language with number restrictions and fixpoints, and its relationship with μ-calculus. In: Proc. of the 11th Eur. Conf. on Artificial Intelligence (ECAI 1994), pp. 411–415 (1994)Google Scholar
  46. 46.
    De Giacomo, G., Lenzerini, M.: TBox and ABox reasoning in expressive description logics. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) ECAI-WS 1992, pp. 316–327. Morgan Kaufmann, Los Altos (1996)Google Scholar
  47. 47.
    Donini, F.: Complexity of reasoning. In: [11], pp. 96–136 (2003)Google Scholar
  48. 48.
    Donini, F., Massacci, F.: EXPTIME tableaux for \(\mathcal{ALC}\). Acta Informatica 124(1), 87–138 (2000)MATHGoogle Scholar
  49. 49.
    Donini, F.M., Hollunder, B., Lenzerini, M., Spaccamela, A.M., Nardi, D., Nutt, W.: The complexity of existential quantification in concept languages. Artificial Intelligence 2–3, 309–327 (1992)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept languages. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1991), pp. 151–162. Morgan Kaufmann, Los Altos (1991)Google Scholar
  51. 51.
    Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: Tractable concept languages. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), Sydney, Australia, pp. 458–463 (1991)Google Scholar
  52. 52.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. of Computer and System Sciences 18, 194–211 (1979)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Fitting, M.: Tableau methods of proof for modal logics. Notre Dame J. of Formal Logic 13(2), 237–247 (1972)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Garey, M.R., Johnson, D.S.: Computers and Intractability — A guide to NP-completeness. W. H. Freeman and Company, San Francisco (1979)MATHGoogle Scholar
  55. 55.
    Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the description logic \({\mathcal{SHIQ}}\). In: Veloso, M.M. (ed.) Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), Hyderabad, India, pp. 399–404 (2007)Google Scholar
  56. 56.
    Goré, R., Nguyen, L.A.: Exptime tableaux for \(\mathcal{ALC}\) using sound global caching. In: Proc. of the 2007 Description Logic Workshop (DL 2007), Brixen-Bressanone, Italy (2007)Google Scholar
  57. 57.
    Grädel, E.: Guarded fragments of first-order logic: A perspective for new description logics? In: Proc. of the 1998 Description Logic Workshop (DL 1998). CEUR Electronic Workshop Proceedings (1998), http://ceur-ws.org/Vol-11/
  58. 58.
    Grädel, E.: On the restraining power of guards. J. of Symbolic Logic 64, 1719–1742 (1999)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable first-order logic. Bulletin of Symbolic Logic 3(1), 53–69 (1997)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modularity of ontologies. In: Veloso, M.M. (ed.) Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), Hyderabad, India, pp. 298–303 (2007)Google Scholar
  61. 61.
    Haarslev, V., Möller, R.: RACE system description. In: Proc. of the 1999 Description Logic Workshop (DL 1999). CEUR Electronic Workshop Proceedings, pp. 130–132 (1999), http://ceur-ws.org/Vol-22/
  62. 62.
    Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–706. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  63. 63.
    Hofmann, M.: Proof-theoretic approach to description-logic. In: Panangaden, P. (ed.) Proc. of the 20th IEEE Symp. on Logic in Computer Science (LICS 2005), pp. 229–237. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  64. 64.
    Hollunder, B.: Consistency checking reduced to satisfiability of concepts in terminological systems. Ann. of Mathematics and Artificial Intelligence 18(2–4), 133–157 (1996)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Hollunder, B., Baader, F.: Qualifying number restrictions in concept languages. In: Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1991), pp. 335–346 (1991)Google Scholar
  66. 66.
    Hollunder, B., Nutt, W., Schmidt-Schauß, M.: Subsumption algorithms for concept description languages. In: Proc. of the 9th Eur. Conf. on Artificial Intelligence (ECAI 1990), London, United Kingdom, Pitman, pp. 348–353 (1990)Google Scholar
  67. 67.
    Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 636–647 (1998)Google Scholar
  68. 68.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \({\mathcal{SROIQ}}\). In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), Lake District, UK, pp. 57–67. AAAI Press/The MIT Press (2006)Google Scholar
  69. 69.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)CrossRefGoogle Scholar
  70. 70.
    Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierarchies. J. of Logic and Computation 9(3), 385–410 (1999)MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  72. 72.
    Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive datalog programs. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) Proc. of the 9th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2004), pp. 152–162. Morgan Kaufmann, Los Altos (2004)Google Scholar
  73. 73.
    Hustadt, U., Schmidt., R.A.: On the relation of resolution and tableaux proof systems for description logics. In: Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), pp. 110–117 (1999)Google Scholar
  74. 74.
    Hustadt, U., Schmidt, R.A.: Issues of decidability for description logics in the framework of resolution. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS (LNAI), vol. 1761, pp. 191–205. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  75. 75.
    Hustadt, U., Schmidt, R.A., Georgieva, L.: A survey of decidable first-order fragments and description logics. Journal of Relational Methods in Computer Science 1, 251–276 (2004)Google Scholar
  76. 76.
    Janin, D., Walukiewicz, I.: Automata for the modal mu-calculus and related results. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  77. 77.
    Kazakov, Y., de Nivelle, H.: Subsumption of concepts in \(\mathcal{FL}_0\) for (cyclic) terminologies with respect to descriptive semantics is PSPACE-complete. In: Proc. of the 2003 Description Logic Workshop (DL 2003). CEUR Electronic Workshop Proceedings (2003), http://CEUR-WS.org/Vol-81/
  78. 78.
    Kazakov, Y., Motik, B.: A resolution-based decision procedure for \(\mathcal{SHOIQ}\). In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 662–677. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  79. 79.
    Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic modularity and module extraction in description logics. In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N. (eds.) Proc. of the 18th Eur. Conf. on Artificial Intelligence (ECAI 2008), pp. 55–59. IOS Press, Amsterdam (2008)Google Scholar
  80. 80.
    Kurtonina, N., de Rijke, M.: Expressiveness of concept expressions in first-order description logics. Artificial Intelligence 107(2), 303–333 (1999)MathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    Lawley., M.: Exploiting fast classification of SNOMED CT for query and integration of health data. In: Cornet, R., Spackman, K. (eds.) Proc. of the 3rd Int. Conf. on Knowledge Representation in Medicine (KR-MED 2008), Phoenix, Arizona, USA (2008)Google Scholar
  82. 82.
    Levesque, H.J., Brachman, R.J.: Expressiveness and tractability in knowledge representation and reasoning. Computational Intelligence 3, 78–93 (1987)CrossRefMATHGoogle Scholar
  83. 83.
    Lutz., C.: Complexity of terminological reasoning revisited. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp. 181–200. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  84. 84.
    Lutz, C.: Interval-based temporal reasoning with general TBoxes. In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pp. 89–94 (2001)Google Scholar
  85. 85.
    Lutz, C.: The complexity of conjunctive query answering in expressive description logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 179–193. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  86. 86.
    Lutz, C., Sattler, U.: Mary likes all cats. In: Proc. of the 2000 Description Logic Workshop (DL 2000). CEUR Electronic Workshop Proceedings, pp. 213–226 (2000), http://ceur-ws.org/Vol-33/
  87. 87.
    MacGregor, R.: The evolving technology of classification-based knowledge representation systems. In: Sowa, J.F. (ed.) Principles of Semantic Networks, pp. 385–400. Morgan Kaufmann, Los Altos (1991)Google Scholar
  88. 88.
    Mays, E., Dionne, R., Weida, R.: K-REP system overview. SIGART Bull. 2(3) (1991)Google Scholar
  89. 89.
    Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminologies for the description logic \(\mathcal{{ALC}}\). In: Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006), AAAI Press/The MIT Press (2006)Google Scholar
  90. 90.
    Minsky, M.: A framework for representing knowledge. In: Haugeland, J. (ed.) Mind Design. The MIT Press, Cambridge (1981); A longer version appeared in The Psychology of Computer Vision (1975), Republished in [31]Google Scholar
  91. 91.
    Mortimer, M.: On languages with two variables. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 21, 135–140 (1975)MathSciNetCrossRefMATHGoogle Scholar
  92. 92.
    Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theoretical Computer Science 54, 267–276 (1987)MathSciNetCrossRefMATHGoogle Scholar
  93. 93.
    Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. LNCS (LNAI), vol. 422. Springer, Heidelberg (1990)MATHGoogle Scholar
  94. 94.
    Nebel, B.: Terminological reasoning is inherently intractable. Artificial Intelligence 43, 235–249 (1990)MathSciNetCrossRefMATHGoogle Scholar
  95. 95.
    Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expressive description logics via tableaux. J. of Automated Reasoning 41(1), 61–98 (2008)MathSciNetCrossRefMATHGoogle Scholar
  96. 96.
    Pacholski, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with counting. In: Proc. of the 12th IEEE Symp. on Logic in Computer Science (LICS 1997), pp. 318–327. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  97. 97.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A., Hagino, T. (eds.) Proc. of the 14th International Conference on World Wide Web (WWW 2005), pp. 633–640. ACM, New York (2005)CrossRefGoogle Scholar
  98. 98.
    Patel-Schneider, P.F.: DLP. In: Proc. of the 1999 Description Logic Workshop (DL 1999). CEUR Electronic Workshop Proceedings, pp. 9–13 (1999), http://ceur-ws.org/Vol-22/
  99. 99.
    Patel-Schneider, P.F., McGuiness, D.L., Brachman, R.J., Resnick, L.A., Borgida, A.: The CLASSIC knowledge representation system: Guiding principles and implementation rational. SIGART Bull. 2(3), 108–113 (1991)CrossRefGoogle Scholar
  100. 100.
    Peltason, C.: The BACK system — an overview. SIGART Bull. 2(3), 114–119 (1991)CrossRefGoogle Scholar
  101. 101.
    Ross Quillian, M.: Semantic memory. In: Minsky, M. (ed.) Semantic Information Processing, pp. 216–270. The MIT Press, Cambridge (1968)Google Scholar
  102. 102.
    Rector, A., Horrocks, I.: Experience building a large, re-usable medical ontology using a description logic with transitivity and concept inclusions. In: Proceedings of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI 1997), Stanford, CA. AAAI Press, Menlo Park (1997)Google Scholar
  103. 103.
    Schild., K.: A correspondence theory for terminological logics: Preliminary report. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), pp. 466–471 (1991)Google Scholar
  104. 104.
    Schild, K.: Querying Knowledge and Data Bases by a Universal Description Logic with Recursion. PhD thesis, Universität des Saarlandes, Germany (1995)Google Scholar
  105. 105.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 355–362. Morgan Kaufmann, Los Altos (2003)Google Scholar
  106. 106.
    Schmidt-Schauß, M.: Subsumption in KL-ONE is undecidable. In: Brachman, R.J., Levesque, H.J., Reiter, R. (eds.) Proc. of the 1st Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1989), pp. 421–431. Morgan Kaufmann, Los Altos (1989)Google Scholar
  107. 107.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with unions and complements. Technical Report SR-88-21, Fachbereich Informatik, Universität Kaiserslautern, Kaiserslautern, Germany (1988)Google Scholar
  108. 108.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)MathSciNetCrossRefMATHGoogle Scholar
  109. 109.
    Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of the 2004 Description Logic Workshop (DL 2004), pp. 212–213 (2004)Google Scholar
  110. 110.
    Suntisrivaraporn, B.: Module extraction and incremental classification: A pragmatic approach for \(\mathcal{EL}^+\) ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 230–244. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  111. 111.
    Suntisrivaraporn, B.: Polynomial-Time Reasoning Support for Design and Maintenance of Large-Scale Biomedical Ontologies. PhD thesis, Fakultät Informatik, TU Dresden (2009), http://lat.inf.tu-dresden.de/research/phd/#Sun-PhD-2008
  112. 112.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, ch. 4, vol. B, pp. 134–189. Elsevier Science Publishers, Amsterdam (1990)Google Scholar
  113. 113.
    Tobies, S.: A PSPACE algorithm for graded modal logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 52–66. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  114. 114.
    Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany (2001)Google Scholar
  115. 115.
    Tsarkov, D., Horrocks, I.: faCT++ description logic reasoner: System description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  116. 116.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115(1), 1–37 (1994)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Franz Baader
    • 1
  1. 1.Theoretical Computer ScienceTU DresdenGermany

Personalised recommendations