Advertisement

Membrane Dissolution and Division in P

  • Damien Woods
  • Niall Murphy
  • Mario J. Pérez-Jiménez
  • Agustín Riscos-Núñez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5715)

Abstract

Membrane systems with dividing and dissolving membranes are known to solve PSPACE problems in polynomial time. However, we give a P upperbound on an important restriction of such systems. In particular we examine systems with dissolution, elementary division and where each membrane initially has at most one child membrane. Even though such systems may create exponentially many membranes, each with different contents, we show that their power is upperbounded by P.

Keywords

Polynomial Time Sink Node Membrane System Dependency Graph Simulation Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J.: Computational efficiency of dissolution rules in membrane systems. International Journal of Computer Mathematics 83(7), 593–611 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Natural Computing 2(3), 265–285 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Mauri, G., Pérez-Jiménez, M.J., Zandron, C.: On a Păun’s Conjecture in Membrane Systems. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 180–192. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Murphy, N., Woods, D.: The computational complexity of uniformity and semi-uniformity in membrane systems (in preparation)Google Scholar
  5. 5.
    Murphy, N., Woods, D.: Active membrane systems without charges and using only symmetric elementary division characterise P. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 367–384. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Murphy, N., Woods, D.: A characterisation of NL using membrane systems without charges and dissolution. In: Calude, C.S., Costa, J.F., Freund, R., Oswald, M., Rozenberg, G. (eds.) UC 2008. LNCS, vol. 5204, pp. 164–176. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Papadimitriou, C.H.: Computational complexity. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  8. 8.
    Păun, G.: Further twenty six open problems in membrane computing. In: Proceedings of the Third Brainstorming Week on Membrane Computing, Sevilla, Spain, January 2005, pp. 249–262 (2005)Google Scholar
  9. 9.
    Păun, G.: P Systems with active membranes: Attacking NP-Complete problems. Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Păun, G.: Membrane Computing. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Sosík, P.: The computational power of cell division in P systems: Beating down parallel computers? Natural Computing 2(3), 287–298 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: A characterization of PSPACE. Journal of Computer and System Sciences 73(1), 137–152 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C., Dinneen, M. (eds.) UMC 2000: Proceedings of the Second International Conference on Unconventional models of Computation, London, UK, pp. 289–301. Springer, Heidelberg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Damien Woods
    • 1
  • Niall Murphy
    • 2
  • Mario J. Pérez-Jiménez
    • 1
  • Agustín Riscos-Núñez
    • 1
  1. 1.Research Group on Natural Computing, Department of Computer Science and Artificial IntelligenceUniversity of SevilleSpain
  2. 2.Department of Computer ScienceNational University of Ireland MaynoothIreland

Personalised recommendations