Computing Domains of Attraction for Planar Dynamics

  • Daniel S. Graça
  • Ning Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5715)


In this note we investigate the problem of computing the domain of attraction of a flow on ℝ2 for a given attractor. We consider an operator that takes two inputs, the description of the flow and a cover of the attractors, and outputs the domain of attraction for the given attractor. We show that: (i) if we consider only (structurally) stable systems, the operator is (strictly semi-)computable; (ii) if we allow all systems defined by C1-functions, the operator is not (semi-)computable. We also address the problem of computing limit cycles on these systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tucker, W.: The Lorenz attractor exists. PhD thesis, Univ. Uppsala (1998)Google Scholar
  2. 2.
    Tucker, W.: The Lorenz attractor exists. In: C. R. Acad. Sci. Paris. Series I - Mathematics, vol. 328, pp. 1197–1202 (1999)Google Scholar
  3. 3.
    Pilyugin, S.Y.: Shadowing in Dynamical Systems. Springer, Heidelberg (1999)MATHGoogle Scholar
  4. 4.
    Grebogi, C., Poon, L., Sauer, T., Yorke, J., Auerbach, D.: Shadowability of chaotic dynamical systems. In: Handbook of Dynamical Systems, vol. 2, pp. 313–344. Elsevier, Amsterdam (2002)Google Scholar
  5. 5.
    Puri, A., Borkar, V., Varaiya, P.: Epsilon-approximation of differential inclusions. In: Proc. of the 34th IEEE Conference on Decision and Control, pp. 2892–2897 (1995)Google Scholar
  6. 6.
    Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, London (1974)MATHGoogle Scholar
  7. 7.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Springer, Heidelberg (1983)CrossRefMATHGoogle Scholar
  8. 8.
    Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, Heidelberg (2001)CrossRefMATHGoogle Scholar
  9. 9.
    Deimling, K.: Multivalued differential equations. de Gruyter Series in Nonlinear Analysis and Applications, vol. 1. Walter de Gruyter & Co., Berlin (1984)MATHGoogle Scholar
  10. 10.
    Aubin, J.P., Cellina, A.: Differential inclusions: Set-valued maps and viability theory. Grundlehren der Mathematischen Wissenschaften, vol. 364. Springer, Berlin (1984)CrossRefMATHGoogle Scholar
  11. 11.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Heidelberg (1989)CrossRefMATHGoogle Scholar
  12. 12.
    Ko, K.I.: Computational Complexity of Real Functions. Birkhäuser, Basel (1991)CrossRefMATHGoogle Scholar
  13. 13.
    Weihrauch, K.: Computable Analysis: an Introduction. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  14. 14.
    Graça, D., Zhong, N., Buescu, J.: Computability, noncomputability and undecidability of maximal intervals of IVPs. Trans. Amer. Math. Soc. 361, 2913–2927 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zhong, N.: Computational unsolvability of domain of attractions of nonlinear systems. Proc. Amer. Math. Soc. (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel S. Graça
    • 1
    • 2
  • Ning Zhong
    • 3
  1. 1.DM/FCT, Universidade do Algarve, C. GambelasFaroPortugal
  2. 2.SQIG/Instituto de TelecomunicaçõesLisbonPortugal
  3. 3.DMS, University of CincinnatiCincinnatiU.S.A.

Personalised recommendations