Computing Domains of Attraction for Planar Dynamics

  • Daniel S. Graça
  • Ning Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5715)

Abstract

In this note we investigate the problem of computing the domain of attraction of a flow on ℝ2 for a given attractor. We consider an operator that takes two inputs, the description of the flow and a cover of the attractors, and outputs the domain of attraction for the given attractor. We show that: (i) if we consider only (structurally) stable systems, the operator is (strictly semi-)computable; (ii) if we allow all systems defined by C1-functions, the operator is not (semi-)computable. We also address the problem of computing limit cycles on these systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tucker, W.: The Lorenz attractor exists. PhD thesis, Univ. Uppsala (1998)Google Scholar
  2. 2.
    Tucker, W.: The Lorenz attractor exists. In: C. R. Acad. Sci. Paris. Series I - Mathematics, vol. 328, pp. 1197–1202 (1999)Google Scholar
  3. 3.
    Pilyugin, S.Y.: Shadowing in Dynamical Systems. Springer, Heidelberg (1999)MATHGoogle Scholar
  4. 4.
    Grebogi, C., Poon, L., Sauer, T., Yorke, J., Auerbach, D.: Shadowability of chaotic dynamical systems. In: Handbook of Dynamical Systems, vol. 2, pp. 313–344. Elsevier, Amsterdam (2002)Google Scholar
  5. 5.
    Puri, A., Borkar, V., Varaiya, P.: Epsilon-approximation of differential inclusions. In: Proc. of the 34th IEEE Conference on Decision and Control, pp. 2892–2897 (1995)Google Scholar
  6. 6.
    Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, London (1974)MATHGoogle Scholar
  7. 7.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Springer, Heidelberg (1983)CrossRefMATHGoogle Scholar
  8. 8.
    Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, Heidelberg (2001)CrossRefMATHGoogle Scholar
  9. 9.
    Deimling, K.: Multivalued differential equations. de Gruyter Series in Nonlinear Analysis and Applications, vol. 1. Walter de Gruyter & Co., Berlin (1984)MATHGoogle Scholar
  10. 10.
    Aubin, J.P., Cellina, A.: Differential inclusions: Set-valued maps and viability theory. Grundlehren der Mathematischen Wissenschaften, vol. 364. Springer, Berlin (1984)CrossRefMATHGoogle Scholar
  11. 11.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Heidelberg (1989)CrossRefMATHGoogle Scholar
  12. 12.
    Ko, K.I.: Computational Complexity of Real Functions. Birkhäuser, Basel (1991)CrossRefMATHGoogle Scholar
  13. 13.
    Weihrauch, K.: Computable Analysis: an Introduction. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  14. 14.
    Graça, D., Zhong, N., Buescu, J.: Computability, noncomputability and undecidability of maximal intervals of IVPs. Trans. Amer. Math. Soc. 361, 2913–2927 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zhong, N.: Computational unsolvability of domain of attractions of nonlinear systems. Proc. Amer. Math. Soc. (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel S. Graça
    • 1
    • 2
  • Ning Zhong
    • 3
  1. 1.DM/FCT, Universidade do Algarve, C. GambelasFaroPortugal
  2. 2.SQIG/Instituto de TelecomunicaçõesLisbonPortugal
  3. 3.DMS, University of CincinnatiCincinnatiU.S.A.

Personalised recommendations