Unfolding Grammars in Adhesive Categories

  • Paolo Baldan
  • Andrea Corradini
  • Tobias Heindel
  • Barbara König
  • Paweł Sobociński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5728)


We generalize the unfolding semantics, previously developed for concrete formalisms such as Petri nets and graph grammars, to the abstract setting of (single pushout) rewriting over adhesive categories. The unfolding construction is characterized as a coreflection, i.e. the unfolding functor arises as the right adjoint to the embedding of the category of occurrence grammars into the category of grammars.

As the unfolding represents potentially infinite computations, we need to work in adhesive categories with “well-behaved” colimits of ω-chains of mono-morphisms. Compared to previous work on the unfolding of Petri nets and graph grammars, our results apply to a wider class of systems, which is due to the use of a refined notion of grammar morphism.


Type Object Graph Transformation Type Graph Graph Grammar Graph Transformation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldan, P.: Modelling Concurrent Computations: from Contextual Petri Nets to Graph Grammars. PhD thesis, Dipartimento di Informatica, Università di Pisa (2000)Google Scholar
  2. 2.
    Baldan, P., Corradini, A., Heindel, T., König, B., Sobociński, P.: Processes for adhesive rewriting systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 202–216. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Baldan, P., Corradini, A., König, B.: A framework for the verification of infinite-state graph transformation systems. Information and Computation 206, 869–907 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baldan, P., Corradini, A., Montanari, U., Ribeiro, L.: Unfolding Semantics of Graph Transformation. Information and Computation 205, 733–782 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baldan, P., Chatain, T., Haar, S., König, B.: Unfolding-based diagnosis of systems with an evolving topology. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 203–217. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Benveniste, A., Fabre, E., Haar, S., Jard, C.: Diagnosis of asynchronous discrete event systems, a net unfolding approach. IEEE Transactions on Automatic Control 48(5), 714–727 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Birkhoff, G.: Lattice Theory. American Mathematical Society (1967)Google Scholar
  8. 8.
    Cockett, R., Guo, X.: Join restriction categories and the importance of being adhesive. Unpublished manuscript, slides from CT 2007 (2007),
  9. 9.
    Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and Concurrency in High-Level Replacement Systems. Mathematical Structures in Computer Science 1, 361–404 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach. In: Proc. of IEEE Conf. on Automata and Switching Theory, pp. 167–180 (1973)Google Scholar
  11. 11.
    Hayman, J., Winskel, G.: The unfolding of general Petri nets. In: Proc. of FSTTCS 2008. Dagstuhl Seminar Proceedings, vol. (08004) (2008)Google Scholar
  12. 12.
    Heindel, T., Sobociński, P.: Van Kampen colimits as bicolimits in Span. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 335–349. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Johnstone, P.T.: Sketches of an Elephant, vol. 1. Oxford Science Publications (2002)Google Scholar
  14. 14.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theoretical Informatics and Applications 39(2), 511–546 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lack, S., Sobociński, P.: Toposes are adhesive. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 184–198. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical Computer Science 109, 181–224 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)CrossRefzbMATHGoogle Scholar
  18. 18.
    Meseguer, J., Montanari, U., Sassone, V.: On the semantics of Place/Transition Petri nets. Mathematical Structures in Computer Science 7(4), 359–397 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Robinson, E., Rosolini, G.: Categories of partial maps. Inf. Comput. 79(2), 95–130 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Andrea Corradini
    • 2
  • Tobias Heindel
    • 3
  • Barbara König
    • 3
  • Paweł Sobociński
    • 4
  1. 1.Dipartimento di Matematica Pura e ApplicataUniversità di PadovaItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaItaly
  3. 3.Abteilung für Informatik und Angewandte KognitionswissenschaftUniversität Duisburg-EssenGermany
  4. 4.ECSUniversity of SouthamptonUnited Kingdom

Personalised recommendations