Advertisement

Relating Coalgebraic Notions of Bisimulation

with Applications to Name-Passing Process Calculi (Extended Abstract)
  • Sam Staton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5728)

Abstract

A labelled transition system can be understood as a coalgebra for a particular endofunctor on the category of sets. Generalizing, we are led to consider coalgebras for arbitrary endofunctors on arbitrary categories.

Bisimulation is a crucial notion in the theory of labelled transition systems. We identify four definitions of bisimulation on general coalgebras. The definitions all specialize to the same notion for the special case of labelled transition systems. We investigate general conditions under which the four notions coincide.

As an extended example, we consider the semantics of name-passing process calculi (such as the pi-calculus), and present a new coalgebraic model for name-passing calculi.

Keywords

Transition System Terminal Sequence Label Transition System Mobile Process Stone Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S.: A domain equation for bisimulation. Inform. and Comput. 92, 161–218 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abramsky, S.: A cook’s tour of the finitary non-well-founded sets. In: We Will Show Them! Essays in Honour of Dov Gabbay, vol. 1, pp. 1–18 (2005)Google Scholar
  3. 3.
    Aczel, P., Mendler, N.: A final coalgebra theorem. In: Proc. of CTCS 1989, pp. 357–365 (1989)Google Scholar
  4. 4.
    Adámek, J.: Introduction to coalgebra. Theory Appl. of Categ. 14(8), 157–199 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    van den Berg, B., Marchi, F.D.: Models of non-well-founded sets via an indexed final coalgebra theorem. J. Symbolic Logic 72(3), 767–791 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bezhanishvili, N., Fontaine, G., Venema, Y.: Vietoris bisimulations. J. Logic Comput. (2008) (to appear)Google Scholar
  7. 7.
    Borceux, F.: Handbook of Categorical Algebra. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    van Breugel, F., Hermida, C., Makkai, M., Worrell, J.B.: An accessible approach to behavioural pseudometrics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1018–1030. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Carboni, A., Kelly, G.M., Wood, R.J.: A 2-categorical approach to geometric morphisms I. Cah. Topol. Géom. Différ. Catég. XXXII(1), 47–95 (1991)Google Scholar
  10. 10.
    Carboni, A., Lack, S., Walters, R.F.C.: Introduction to extensive and distributive categories. J. Pure Appl. Algebra 83, 145–158 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems. Pacific J. Math. 82(1), 43–57 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocongruence for probabilistic systems. Inform. and Comput. 204(4), 503–523 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ferrari, G., Montanari, U., Pistore, M.: Minimizing transition systems for name passing calculi: A co-algebraic formulation. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 129–158. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Fiore, M.P., Staton, S.: Comparing operational models of name-passing process calculi. Inform. and Comput. 204(4), 435–678 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fiore, M.P., Staton, S.: A congruence rule format for name-passing process calculi from mathematical structural operational semantics. In: Proc. of LICS 2006, pp. 49–58 (2006)Google Scholar
  16. 16.
    Fiore, M.P., Turi, D.: Semantics of name and value passing (extended abstract). In: Proc. of LICS 2001, pp. 93–104 (2001)Google Scholar
  17. 17.
    Gabbay, M.J., Hofmann, M.: Nominal renaming sets. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 158–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13, 341–363 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras (pre)sheaves and named sets. Higher-Order Symb. Comput. 19(2–3), 283–304 (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Ghani, N., Yemane, K., Victor, B.: Relationally staged computations in calculi of mobile processes. In: Proc. of CMCS 2004, pp. 105–120 (2004)Google Scholar
  21. 21.
    Gumm, H.P.: Functors for coalgebras. Algebra Univers 45, 135–147 (2001)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inform. and Comput. 145(2), 107–152 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Jacobs, B., Rutten, J.: A tutorial on coalgebras and coinduction. EATCS Bulletin 62, 222–259 (1997)zbMATHGoogle Scholar
  24. 24.
    Johnstone, P., Power, J., Tsujishita, T., Watanabe, H., Worrell, J.: On the structure of categories of coalgebras. Theoret. Comput. Sci. 260(1-2), 87–117 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  26. 26.
    Joyal, A., Moerdijk, I.: Algebraic Set Theory. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  27. 27.
    Kelly, G.M., Power, A.J.: Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads. J. Pure Appl. Algebra 89(1–2), 163–179 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Klin, B.: Adding recursive constructs to bialgebraic semantics. J. Log. Algebr. Program. 61, 259–286 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theoret. Comput. Sci. 327(1-2), 109–134 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD thesis, Ludwig-Maximilians-Universität München (2000)Google Scholar
  31. 31.
    Miculan, M., Yemane, K.: A unifying model of variables and names. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 170–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefzbMATHGoogle Scholar
  33. 33.
    Milner, R.: Calculi for synchrony and asynchrony. Theoret. Comput. Sci. 25, 267–310 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Inform. and Comput. 100(1), 1–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Plotkin, G.D.: Bialgebraic semantics and recursion (extended abstract). In: Proc. of CMCS 2001. Electron. Notes Theor. Comput. Sci, vol. 44(1), pp. 1–4 (2001)Google Scholar
  36. 36.
    Rutten, J.J.M.M.: Relators and metric bisimulations. In: Proc. of CMCS 1998. Electron. Notes Theor. Comput. Sci, vol. 11 (1998)Google Scholar
  37. 37.
    Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249(1), 3–80 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta Inform 33(1), 69–97 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sangiorgi, D., Walker, D.: The π-calculus: a theory of mobile processes. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  40. 40.
    Staton, S.: Name-passing process calculi: operational models and structural operational semantics. PhD thesis, University of Cambridge (2007)Google Scholar
  41. 41.
    Staton, S.: General structural operational semantics through categorical logic. In: Proc. of LICS 2008, pp. 166–177 (2008)Google Scholar
  42. 42.
    Viglizzo, I.D.: Final sequences and final coalgebras for measurable spaces. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 395–407. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  43. 43.
    de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems: a coalgebraic approach. Theoret. Comput. Sci. 221, 271–293 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Worrell, J.: On the final sequence of a finitary set functor. Theoret. Comput. Sci. 338, 184–199 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sam Staton
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeUK

Personalised recommendations