Weak Bisimilarity Coalgebraically

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5728)


We argue that weak bisimilarity of processes can be conveniently captured in a semantic domain by a combination of traces and coalgebraic finality, in such a way that important process algebra aspects such as parallel composition and recursion can be represented compositionally. We illustrate the usefulness of our approach by providing a fully-abstract denotational semantics for CCS under weak bisimilarity.


Semantic Operator Parallel Composition Label Transition System Denotational Semantic Semantic Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S.: A domain equation for bisimulation. Inf. Comput. 92(2), 161–218 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aczel, P.: Final universes of processes. In: Main, M.G., Melton, A.C., Mislove, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 1–28. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  3. 3.
    Baldamus, M., Parrow, J., Victor, B.: A fully abstract encoding of the pi-calculus with data terms. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1202–1213. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Baldamus, M., Stauner, T.: Modifying Esterel concepts to model hybrid systems. Electr. Notes Theor. Comput. Sci. 65(5) (2002)Google Scholar
  5. 5.
    Bloom, B.: Structural operational semantics for weak bisimulations. Theor. Comput. Sci., 146(1&2), 25–68 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boreale, M., Gadducci, F.: Denotational testing semantics in coinductive form. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 279–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Buscemi, M.G., Montanari, U.: A first order coalgebraic model of π-calculus early observational equivalence. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 449–465. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Cattani, G.L., Sewell, P.: Models for name-passing processes: interleaving and causal. In: LICS 2000, pp. 322–333 (2000)Google Scholar
  9. 9.
    Fiore, M., Cattani, G.L., Winskel, G.: Weak bisimulation and open maps. In: LICS 1999, pp. 67–76 (1999)Google Scholar
  10. 10.
    Fiore, M.P., Moggi, E., Sangiorgi, D.: A fully-abstract model for the π-calculus. In: LICS 1996, pp. 43–54 (1996)Google Scholar
  11. 11.
    Hennessy, M.: A fully abstract denotational semantics for the π-calculus. Theor. Comput. Sci. 278(1-2), 53–89 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Honsell, F., Lenisa, M., Montanari, U., Pistore, M.: Final semantics for the pi-calculus. In: PROCOMET 1998, pp. 225–243 (1998)Google Scholar
  13. 13.
    Lenisa, M.: Themes in Final Semantics. Dipartimento di Informatica, Universita‘ di Pisa, TD 6 (1998)Google Scholar
  14. 14.
    Milner, R.: Communication and concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  15. 15.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts i and ii. Inf. Comput. 100(1), 1–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nielsen, M., Chang, A.: Observe behaviour categorically. In: FST&TCS 1995, pp. 263–278 (1995)Google Scholar
  17. 17.
    Popescu, A.: A fully abstract coalgebraic semantics for the pi-calculus under weak bisimilarity. Tech. Report UIUCDCS-R-2009-3045. University of Illinois (2009)Google Scholar
  18. 18.
    Rutten, J.J.M.M.: Processes as terms: Non-well-founded models for bisimulation. Math. Struct. Comp. Sci. 2(3), 257–275 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), 3–80 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sangiorgi, D., Walker, D.: The π-calculus. A theory of mobile processes. Cambridge (2001)Google Scholar
  21. 21.
    Sokolova, A., de Vink, E.P., Woracek, H.: Weak bisimulation for action-type coalgebras. Electr. Notes Theor. Comput. Sci. 122, 211–228 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Stark, I.: A fully-abstract domain model for the π-calculus. In: LICS 1996, pp. 36–42 (1996)Google Scholar
  23. 23.
    Staton, S.: Name-passing process calculi: operational models and structural operational semantics. PhD thesis, University of Cambridge (2007)Google Scholar
  24. 24.
    Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: LICS 1997, pp. 280–291 (1997)Google Scholar
  25. 25.
    van Glabbeek, R.J.: On cool congruence formats for weak bisimulations. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 318–333. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.University of Illinois at Urbana-Champaign and Institute of Mathematics Simion Stoilow of the Romanian AcademyUSA

Personalised recommendations