Points of View on Building an Intelligent Robot

  • Claudiu Pozna
  • Radu-Emil Precup
  • Stefan Preitl
  • Fritz Troester
  • József K. Tar
Part of the Studies in Computational Intelligence book series (SCI, volume 243)


Aspects concerning the building of an intelligent robot are discussed. The intelligent robot belongs to a class of autonomous robots. The hardware and software architectures of the robot are analyzed. They are part of the new three level intelligent control system architecture. The mathematical model of the merged robot and trajectory tracking is derived in order to be used as controlled plant. The pole placement approach is applied in the design of the state feedback controller. Real-time experimental results done in trajectory tracking validate the architectures, models and design method.


artificial intelligence driving robot intelligent robot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Althoff, M., Stursberg, O., Buss, M.: Safety Assessment of Autonomous Cars Using Verification Techniques. In: Proceedings of 2007 American Control Conference, pp. 4154–4159 (2007)Google Scholar
  2. 2.
    Baranyi, P., Korondi, P., Tanaka, K.: Parallel Distributed Compensation-based Stabilization of a 3-DOF RC Helicopter: a Tensor Product Transformation-based Approach. J. Adv. Comput. Intell. Intell. Inform. 13, 25–34 (2009)Google Scholar
  3. 3.
    Bengtsson, J., Johansson, R., Sjögren, A.: Modeling of Drivers’ Longitudinal Behavior. In: Proceedings of 2001 IEEE/ASME Int. Conference on Advanced Intelligent Mechatronics, vol. 2, pp. 1076–1081 (2001)Google Scholar
  4. 4.
    Bensalem, S., Gallien, M., Ingrand, F., et al.: Designing Autonomous Robots. IEEE Robot. Autom. Mag. 16, 67–77 (2009)CrossRefGoogle Scholar
  5. 5.
    Blažič, S., Škrjanc, I.: Design and Stability Analysis of Fuzzy Model-based Predictive Control - a case study. J. Intell. Robot Syst. 49, 279–292 (2007)CrossRefGoogle Scholar
  6. 6.
    Giovannangeli, C., Gaussier, P.: Autonomous Vision-based Navigation: Goal-oriented Action Planning by Transient States Prediction, Cognitive Map Building, and Sensory-Motor Learning. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 676–683 (2008)Google Scholar
  7. 7.
    Goodrich, M.A., Boer, E.R., Inoue, H.A.: A Characterization of Dynamic Human Braking Behavior with Implications for ACC design. In: Proceedings of 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, pp. 964–969 (1999)Google Scholar
  8. 8.
    Hirsch, K., Hilgert, J., Lalo, W., et al.: Optimization of Emergency Trajectories for Autonomous Vehicles with Respect to Linear Vehicle Dynamics. In: Proceedings of 2005 IEEE/ASME International Conference on Advance Intelligent Mechatronics, pp. 528–533 (2005)Google Scholar
  9. 9.
    Isermann, R.: Diagnosis Methods for Electronic-controlled Vehicles. Veh. Syst. Dyn. 36, 77–117 (2001)CrossRefGoogle Scholar
  10. 10.
    Horváth, L., Rudas, I.J.: Modeling and Problem Solving Methods for Engineers. Academic Press, Elsevier, Burlington (2004)Google Scholar
  11. 11.
    Hwang, C.L., Wu, H.M., Shih, C.L.: Fuzzy Sliding-Mode Underactuated Control for Autonomous Dynamic Balance of an Electrical Bicycle. IEEE Trans. Control Syst. Technol. 17, 658–670 (2009)CrossRefGoogle Scholar
  12. 12.
    Johanyák, Z.C., Tikk, D., Kovács, S., Wong, K.K.: Fuzzy Rule Interpolation Matlab Toolbox - FRI Toolbox. In: Proceedings of 15th IEEE International Conference on Fuzzy Systems, pp. 1427–1433 (2006)Google Scholar
  13. 13.
    Klein, J., Lecomte, C., Miche, P.: Preceding Car Tracking Using Belief Functions and a Particle Filter. In: Proceedings of 19th International Conference on Pattern Recognition, vol. 4 (2008) doi:10.1109/ICPR.2008.4761008:4Google Scholar
  14. 14.
    Kubota, T., Hasimoto, T., Kawaguchi, J., et al.: Vision-based Navigation by Landmark for Robotic Explorer. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, pp. 1170–1175 (2009)Google Scholar
  15. 15.
    Laszka, A., Várkonyi Kóczy, A.R., Pék, G., Várlaki, P.: Universal Autonomous Robot Navigation Using Quasi Optimal Path Generation. In: Proceedings of 4th International Conference on Autonomous Robots and Agents, pp. 458–463 (2009)Google Scholar
  16. 16.
    Meystel, A., Albus, J.S.: Intelligent Systems. John Wiley and Sons, New York (2002)Google Scholar
  17. 17.
    Pozna, C., Troester, F.: Research on the ACC Autonomous Car. J. Autom. Mob. Robot Intell. Syst. 1, 32–40 (2007)Google Scholar
  18. 18.
    Rawlinson, D., Jarvis, R.: Ways to Tell Robots Where to Go - Directing Autonomous Robots Using Topological Instructions. IEEE Robot Autom. Mag. 15, 27–36 (2008)CrossRefGoogle Scholar
  19. 19.
    Sadoghi Yazdi, H., Lotfizad, M., Fathy, M.: Car Tracking by Quantised Input LMS, QX-LMS Algorithm in Traffic Scenes. IEE Proc. Vis. Image Signal Process 153, 37–45 (2006)CrossRefGoogle Scholar
  20. 20.
    Shahmaleki, P., Mahzoon, M.: Designing a Hierarchical Fuzzy Controller for Backing-up a Four Wheel Autonomous Robot. In: Proceedings of 2008 American Control Conference, pp. 4893–4897 (2009)Google Scholar
  21. 21.
    Shunguang, W., Decker, S., Chang, P., et al.: Collision Sensing by Stereo Vision and Radar Sensor Fusion. In: Proceedings of 2008 IEEE Intelligent Vehicles Symposium, pp. 404–409 (2008)Google Scholar
  22. 22.
    Tanaka, K., Yamaguchi, K., Ohtake, H., Wang, H.O.: Sensor Reduction for Backing-up Control of a Vehicle with Triple Trailers. IEEE Trans. Ind. Electron. 56, 497–509 (2009)CrossRefGoogle Scholar
  23. 23.
    Ungoren, A.Y., Peng, H.: An Adaptive Lateral Preview Driver Model. Veh. Syst. Dyn. 43, 245–259 (2005)CrossRefGoogle Scholar
  24. 24.
    Vaščák, J.: Fuzzy Cognitive Maps in Path Planning. Acta Tech. Jaurinensis Ser. Intell. Comput. 1, 467–479 (2008)Google Scholar
  25. 25.
    Wada, T., Doi, S., Tsuru, N., et al.: Formulation of Deceleration Behavior of an Expert Driver for Automatic Braking System. In: Proceedings of International Conference on Control, Automation and Systems, pp. 2908–2912 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Claudiu Pozna
    • 1
  • Radu-Emil Precup
    • 2
  • Stefan Preitl
    • 2
  • Fritz Troester
    • 3
  • József K. Tar
    • 4
  1. 1.Department of Product Design and RoboticsTransilvania University of BrasovBrasovRomania
  2. 2.Department of Automation and Applied Informatics“Politehnica” University of TimisoaraTimisoaraRomania
  3. 3.Department of Mechanical and Electrical Eng.University of Applied Science HeilbronnHeilbronnGermany
  4. 4.Institute of Intelligent Engineering SystemsBudapest Tech Polytechnical InstitutionBudapestHungary

Personalised recommendations