Advertisement

Iterative Feedback Tuning in Linear and Fuzzy Control Systems

  • Radu-Emil Precup
  • Mircea-Bogdan Rădac
  • Stefan Preitl
  • Emil M. Petriu
  • Claudia-Adina Dragoş
Part of the Studies in Computational Intelligence book series (SCI, volume 243)

Abstract

Aspects concerning the design of linear and fuzzy control systems based on the Iterative Feedback Tuning (IFT) approach are discussed. Two types of controller parametric conditions are derived to guarantee the robust stability of the control systems. The conditions are included in the steps of the IFT algorithms of linear control systems. Next an IFT-based design of a class of Takagi-Sugeno PI-fuzzy controllers (PI-FCs) is given. The design method maps the parameters of the linear PI controllers onto the parameters of the Takagi-Sugeno PI-FCs. The application of IFT in linear and fuzzy control systems is exemplified in a case study dealing with the angular position control of a DC servo system with backlash laboratory equipment. The performance enhancement ensured by IFT and fuzzy control is illustrated by real-time experimental results.

Keywords

Iterative Feedback Tuning fuzzy control robust stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, B.D.O., Jury, E.I., Mansour, M.: On Robust Hurwitz Polynomials. IEEE Trans. Autom. Control 32, 909–913 (1987)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Angelov, P.P.: Evolving Rule-based Models: A Tool for Design of Flexible Adaptive Systems. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  3. 3.
    Baranyi, P., Korondi, P., Tanaka, K.: Parallel-distributed Compensation-based Stabilization of a 3-DOF RC Helicopter: a Tensor Product Transformation-based Approach. J. Adv. Comput. Intell. Intell. Inform. 13, 25–34 (2009)Google Scholar
  4. 4.
    Blažič, S., Škrjanc, I.: Design and Stability Analysis of Fuzzy Model-based Predictive Control - a case study. J. Intell. Robot Syst. 49, 279–292 (2007)CrossRefGoogle Scholar
  5. 5.
    Blažič, S., Škrjanc, I., Matko, D.: Globally Stable Direct Fuzzy Model Reference Adaptive Control. Fuzzy Sets Syst. 139, 3–33 (2003)zbMATHCrossRefGoogle Scholar
  6. 6.
    Campi, M.C., Lecchini, A., Savaresi, S.M.: Virtual Reference Feedback Tuning (VRFT): a New Direct Approach to the Design of Feedback Controllers. In: Proceedings of 39th Conference on Decision and Control, pp. 623–628 (2000)Google Scholar
  7. 7.
    Campi, M.C., Lecchini, A., Savaresi, S.M.: Direct Nonlinear Control Design: the Virtual Reference Feedback Tuning (VRFT) Approach. IEEE Trans. Autom. Control 51, 14–27 (2006)CrossRefGoogle Scholar
  8. 8.
    Chang, Y.Z., Tsai, Z.R., Hwang, J.D., Lee, J.: Robust Fuzzy Control and Evolutionary Fuzzy Identification of Singularly Perturbed Nonlinear Systems with Parameter Uncertainty. Electr. Eng. 90, 379–393 (2008)CrossRefGoogle Scholar
  9. 9.
    Du, H., Zhang, N.: Fuzzy Control for Nonlinear Uncertain Electrohydraulic Active Suspensions with Input Constraint. IEEE Trans. Fuzzy Syst. 17, 343–356 (2009)CrossRefGoogle Scholar
  10. 10.
    Franklin, G.F., Powell, J.D., Workman, M.L.: Digital Control of Dynamic Systems. Addison-Wesley, Menlo Park (1998)Google Scholar
  11. 11.
    Gevers, M.: Iterative Feedback Tuning: Theory and Applications in Chemical Process Control. J. A. 38, 16–25 (1997)Google Scholar
  12. 12.
    Galichet, S., Foulloy, L.: Fuzzy Controllers: Synthesis and Equivalences. IEEE Trans. Fuzzy Syst. 3, 140–148 (1995)CrossRefGoogle Scholar
  13. 13.
    Hildebrand, R., Lecchini, A., Solari, G., Gevers, M.: Prefiltering in Iterative Feedback Tuning: Optimization of the Prefilter for Accuracy. IEEE Trans. Autom. Control 49, 1801–1805 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hildebrand, R., Lecchini, A., Solari, G., Gevers, M.: Optimal Prefiltering in Iterative Feedback Tuning. IEEE Trans. Autom. Control 509, 1196–1200 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Hjalmarsson, H.: Iterative Feedback Tuning - an overview. Int. J. Adapt Control Signal Process 16, 373–395 (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hjalmarsson, H., Gevers, M., Gunnarsson, S., et al.: Iterative Feedback Tuning: theory and applications. IEEE Control Syst. Mag 18, 26–41 (1998)CrossRefGoogle Scholar
  17. 17.
    Hjalmarsson, H., Gunnarsson, S., Gevers, M.: A Convergent Iterative Restricted Complexity Control Design Scheme. In: Proceedings of 33rd IEEE Conference on Decision and Control, pp. 1735–1740 (1994)Google Scholar
  18. 18.
    Horváth, L., Rudas, I.J.: Modeling and Problem Solving Methods for Engineers. Academic Press, Elsevier, Burlington (2004)Google Scholar
  19. 19.
    Kacprzyk, J.: Multistage Fuzzy Control: A Model-based Approach to Control and Decision-Making. Wiley, Chichester (1997)zbMATHGoogle Scholar
  20. 20.
    Karimi, A., Mišković, L., Bonvin, D.: Iterative Correlation-based Controller Tuning. Int. J. Adapt Control Signal Process 18, 645–664 (2004)zbMATHCrossRefGoogle Scholar
  21. 21.
    Kharitonov, V.L.: Asymptotic Stability of an Equilibrium Position of a Family of Systems of Linear Differential Equations. Differ. Equ. 14, 1483–1485 (1979)zbMATHGoogle Scholar
  22. 22.
    Kovačić, Z., Bogdan, S.: Fuzzy Controller Design: Theory and Applications. CRC Press, Boca Raton (2006)zbMATHGoogle Scholar
  23. 23.
    Johanyák, Z.C., Kovács, S.: Sparse Fuzzy System Generation by Rule Base Extension. In: Proceedings of 11th International Conference on Intelligent Engineering Systems, pp. 99–104 (2007)Google Scholar
  24. 24.
    Lam, H.K., Seneviratne, L.D.: Tracking Control of Sampled-Data Fuzzy-Model-based Control Systems. IET Control Theory Appl. 3, 56–67 (2009)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Lecchini, A., Campi, M.C., Savaresi, S.M.: Virtual Reference Feedback Tuning for Two Degree of Freedom Controllers. Int. J. Adapt Control Signal Process 16, 355–371 (2002)zbMATHCrossRefGoogle Scholar
  26. 26.
    Mansouri, B., Manamanni, N., Guelton, K., et al.: Output Feedback LMI Tracking Control Conditions with H ∞  Criterion for Uncertain and Disturbed T-S Models. Inf. Sci. 179, 446–457 (2009)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Precup, R.E., Preitl, S.: PI and PID Controllers Tuning for Integral-Type Servo Systems to Ensure Robust Stability and Controller Robustness. Electr. Eng. 88, 149–156 (2006)CrossRefGoogle Scholar
  28. 28.
    Precup, R.E., Preitl, S., Rudas, I.J., et al.: Design and Experiments for a Class of Fuzzy Controlled Servo Systems. IEEE/ASME Trans Mechatron 13, 22–35 (2008)CrossRefGoogle Scholar
  29. 29.
    Precup, R.E., Preitl, Z., Preitl, S.: Iterative Feedback Tuning Approach to Development of PI-Fuzzy Controllers. In: Proceedings of 2007 IEEE International Conference on Fuzzy Systems, pp. 199–204 (2007)Google Scholar
  30. 30.
    Sala, A.: Integrating Virtual Reference Feedback Tuning into a Unified Closed-Loop Identification Framework. Automatica 43, 178–183 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Sala, A., Guerra, T.M., Babuška, R.: Perspectives of Fuzzy Systems and Control. Fuzzy Sets Syst. 156, 432–444 (2005)zbMATHCrossRefGoogle Scholar
  32. 32.
    Valente de Oliveira, J., Gomide, F.A.C.: Formal Methods for Fuzzy Modeling and Control. Fuzzy Sets Syst. 121, 1–2 (2001)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Vaščák, J.: Navigation of Mobile Robots Using Potential Fields and Computational Intelligence Means. Acta Polytech. Hung. 4, 63–74 (2007)Google Scholar
  34. 34.
    Yao, L., Huang, P.Z.: Learning of Hybrid Fuzzy Controller for the Optical Data Storage Device. IEEE/ASME Trans. Mechatron. 13, 3–13 (2008)CrossRefGoogle Scholar
  35. 35.
    Zhong, Q., Bao, J., Yu, Y., Liao, X.: Impulsive Control for T-S fuzzy Model-based Chaotic Systems. Math. Comput. Simul. 79, 409–415 (2008)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Radu-Emil Precup
    • 1
  • Mircea-Bogdan Rădac
    • 1
  • Stefan Preitl
    • 1
  • Emil M. Petriu
    • 2
  • Claudia-Adina Dragoş
    • 1
  1. 1.Department of Automation and Applied Informatics“Politehnica” University of TimisoaraTimisoaraRomania
  2. 2.School of Information Technology and EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations