Model-Based Design Issues in Fuzzy Logic Control

  • Stefan Preitl
  • Radu-Emil Precup
  • Marius-Lucian Tomescu
  • Mircea-Bogdan Rădac
  • Emil M. Petriu
  • Claudia-Adina Dragoş
Part of the Studies in Computational Intelligence book series (SCI, volume 243)


Model-based design issues of fuzzy logic control systems for Single Input-Single Output (SISO) nonlinear time-varying plants are discussed. The emphasis is given to the stable design of fuzzy logic controllers (FLCs). The accepted FLCs belong to the classes of type-II fuzzy systems and type-III fuzzy systems according to Sugeno’s classification. Two original theorems that ensure the uniformly stability and the uniformly asymptotically stability of fuzzy logic control systems are given. The stability analyses are done in the sense of Lyapunov and the approaches are expressed in terms of sufficient inequality-type stability conditions. The effectiveness of the theoretical results is proved by their application in the stable design of Takagi-Sugeno FLCs for two SISO nonlinear time-varying plants, the Lorenz chaotic system and a laboratory Anti-lock Braking System. Digital simulation and real-time experimental results are included.


fuzzy logic control model-based design stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arino, C., Sala, A.: Relaxed LMI Conditions for Closed-Loop Fuzzy Systems with Tensor-Product Structure. Eng. Appl. Artif. Intell. 20, 1036–1046 (2007)CrossRefGoogle Scholar
  2. 2.
    Baranyi, P.: TP Model Transformation as a Way to LMI-based Controller Design. IEEE Transactions Ind. Electron 51, 387–400 (2004)CrossRefGoogle Scholar
  3. 3.
    Baranyi, P., Korondi, P., Tanaka, K.: Parallel Distributed Compensation-based Stabilization of a 3-DOF RC Helicopter: a Tensor Product Transformation-based Approach. J. Adv. Comput. Intell. Intell. Inform 13, 25–34 (2009)Google Scholar
  4. 4.
    Blažič, S., Škrjanc, I.: Design and Stability Analysis of Fuzzy Model-based Predictive Control - a case study. J. Intell. Robot Syst. 49, 279–292 (2007)CrossRefGoogle Scholar
  5. 5.
    Horváth, L., Rudas, I.J.: Modeling and Problem Solving Methods for Engineers. Academic Press, Elsevier, Burlington (2004)Google Scholar
  6. 6.
    Johansen, T.A., Shorten, R., Murray-Smith, R.: On the Interpretation and Identification of Dynamic Takagi-Sugenofuzzy Models. IEEE Trans. Fuzzy Syst. 8, 297–313 (2000)CrossRefGoogle Scholar
  7. 7.
    Johanyák, Z.C., Tikk, D., Kovács, S., Wong, K.K.: Fuzzy Rule Interpolation Matlab Toolbox - FRI Toolbox. In: Proceedings of 15th IEEE International Conference on Fuzzy Systems, pp. 1427–1433 (2006)Google Scholar
  8. 8.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)zbMATHGoogle Scholar
  9. 9.
    Kim, S.H., Park, P.G.: Observer-based Relaxed H ∞  Control for Fuzzy Systems Using a Multiple Lyapunov Function. IEEE Trans. Fuzzy Syst. 17, 477–484 (2009)CrossRefGoogle Scholar
  10. 10.
    Kóczy, L.T.: Fuzzy If-Then Rule Models and Their Transformation into one Another. IEEE Trans. Syst. Man Cybern. A 26, 621–637 (1996)CrossRefGoogle Scholar
  11. 11.
    Kruszewski, A., Wang, R., Guerra, T.M.: Nonquadratic Stabilization Conditions for a Class of Uncertain Nonlinear Discrete Time TS Fuzzy Models: a New Approach. IEEE Trans. Autom. Control 53, 606–611 (2008)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lam, H.K., Leung, F.H.F.: Stability Analysis of Discrete-Time Fuzzy-Model-based Control Systems with Time Delay: Time-Delay Independent Approach. Fuzzy Sets Syst 159, 990–1000 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lam, H.K., Seneviratne, L.D.: Tracking Control of Sampled-Data Fuzzy-Model-based Control Systems. IET Control Theory Appl. 3, 56–67 (2009)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Lee, H.C., Choi, J.W.: Linear Time-Varying Eigenstructure Assignment with Flight Control Application. IEEE Trans. Aerosp. Eletron Eng. 40, 145–157 (2004)Google Scholar
  15. 15.
    Lendek, Z., Babuška, R., De Schutter, B.: Stability Analysis and Observer Design for Decentralized TS Fuzzy Systems. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 631–636 (2008)Google Scholar
  16. 16.
    Lorenz, E.N.: Deterministic Nonperiodic Flow. Journal Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  17. 17.
    Lorenz, E.N.: The Essence of Chaos. University of Washington Press, Seattle (1993)zbMATHGoogle Scholar
  18. 18.
    Michels, K., Klawonn, F., Kruse, R., Nürnberger, A.: Fuzzy Control: Fundamentals, Stability and Design of Fuzzy Controllers. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  19. 19.
    Oblak, S., Škrjanc, I., Blažič, S.: Fault Detection for Nonlinear Systems with Uncertain Parameters Based on the Interval Fuzzy Model. Eng. Appl. Artif. Intell. 20, 503–510 (2007)CrossRefGoogle Scholar
  20. 20.
    Pang, C.T., Lur, Y.Y.: On the Stability of Takagi-Sugeno Fuzzy Systems with Time-Varying Uncertainties. IEEE Trans. Fuzzy Syst. 16, 162–170 (2008)CrossRefGoogle Scholar
  21. 21.
    Petres, Z., Baranyi, P., Korondi, P., Hashimoto, H.: Trajectory Tracking by TP Model Transformation: Case Study of a Benchmark Problem. IEEE Trans. Ind. Electron 54, 1654–1663 (2007)CrossRefGoogle Scholar
  22. 22.
    Precup, R.E., Preitl, S., Rudas, I.J., et al.: Design and Experiments for a Class of Fuzzy Logic Controlled Servo Systems. IEEE/ASME Trans. Mechatron. 13, 22–35 (2008a)CrossRefGoogle Scholar
  23. 23.
    Precup, R.E., Preitl, S., Ursache, I.B., et al.: On the Combination of Tensor Product and Fuzzy Models. In: Proceedings of 2008 IEEE International Conference on Automation, Quality and Testing, Robotics, vol. 2, pp. 48–53 (2008b)Google Scholar
  24. 24.
    Rădac, M.B., Precup, R.E., Preitl, S., et al.: Linear and Fuzzy Control Solutions for a Laboratory Anti-Lock Braking System. In: Proceedings of 6th International Symposium on Intelligent Systems and Informatics paper index, vol. 49, p. 6 (2008)Google Scholar
  25. 25.
    Ruspini, E.H.: A new Approach to Clustering. Inf. Control 15, 22–32 (1969)zbMATHCrossRefGoogle Scholar
  26. 26.
    Sala, A., Guerra, T.M., Babuška, R.: Perspectives of Fuzzy Systems and Control. Fuzzy Sets Syst. 156, 432–444 (2005)zbMATHCrossRefGoogle Scholar
  27. 27.
    Sugeno, M.: On Stability of Fuzzy Systems Expressed by Fuzzy Rules with Singleton Consequents. IEEE Trans. Fuzzy Syst. 7, 201–224 (1999)CrossRefGoogle Scholar
  28. 28.
    Sun, C.H., Wang, W.J.: An Improved Stability Criterion for T-S Fuzzy Discrete Systems via Vertex Expression. IEEE Trans. Syst. Man Cybern. B 36, 672–678 (2006)CrossRefGoogle Scholar
  29. 29.
    Škrjanc, I., Blažič, S., Agamennoni, O.E.: Interval Fuzzy Modeling Applied to Wiener Models with Uncertainties. IEEE Trans. Syst. Man Cybern. B 35, 1092–1095 (2005)CrossRefGoogle Scholar
  30. 30.
    Tanaka, K., Ohtake, H., Wang, H.O.: A Descriptor System Approach to Fuzzy Control System Design via Fuzzy Lyapunov Functions. IEEE Trans. Fuzzy Syst. 15, 333–341 (2007)CrossRefGoogle Scholar
  31. 31.
    Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and LMI-based Design. IEEE Trans. Fuzzy Syst. 6, 250–265 (1998)CrossRefGoogle Scholar
  32. 32.
    Tanaka, K., Yamaguchi, K., Ohtake, H., Wang, H.O.: Sensor Reduction for Backing-up Control of a Vehicle with Triple Trailers. IEEE Trans. Ind. Electron 56, 497–509 (2009)CrossRefGoogle Scholar
  33. 33.
    Thiele, H.: A Characterization of Arbitrary Ruspini Partitions by Fuzzy Similarity Relations. In: Proceedings of Sixth IEEE International Conference on Fuzzy Systems, vol. 1, pp. 131–134 (1997)Google Scholar
  34. 34.
    Van der Kloet, P., Neerhoff, F.L.: Dynamic Eigenvalues for Scalar Linear Time-Varying Systems. In: Proceedings of 15th International Symposium on Mathematical Theory of Networks and Systems paper index, vol. 14423, p. 8 (2002)Google Scholar
  35. 35.
    Vaščák, J.: Fuzzy Cognitive Maps in Path Planning. Acta Tech. Jaurinensis Ser. Intell. Comput. 1, 467–479 (2008)Google Scholar
  36. 36.
    Wang, W.H., Sun, C.H.: Relaxed Stability and Stabilization Conditions for a TS Fuzzy Discrete System. Fuzzy Sets Syst. 156, 208–225 (2005)zbMATHCrossRefGoogle Scholar
  37. 37.
    Wei, G., Feng, G., Wang, Z.: Robust H ∞  Control for Discrete-Time Fuzzy Systems with Infinite-distributed Delays. IEEE Trans. Fuzzy Syst. 17, 224–232 (2009)CrossRefGoogle Scholar
  38. 38.
    Yang, C., Zhang, Q.: Multiobjective Control for T-S Fuzzy Singularly Perturbed Systems. IEEE Trans. Fuzzy Syst. 17, 104–115 (2009)CrossRefGoogle Scholar
  39. 39.
    Yoneyama, J.: Robust Stability and Stabilization for Uncertain Takagi-Sugeno Fuzzy Time-Delay Systems. Fuzzy Sets Syst. 158, 115–134 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Yuan, X., Wang, Y.: A Novel Electronic-Throttle-Valve Controller-based on Approximate Model Method. IEEE Trans. Ind. Electron. 56, 883–890 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stefan Preitl
    • 1
  • Radu-Emil Precup
    • 1
  • Marius-Lucian Tomescu
    • 2
  • Mircea-Bogdan Rădac
    • 1
  • Emil M. Petriu
    • 3
  • Claudia-Adina Dragoş
    • 1
  1. 1.Department of Automation and Applied Informatics“Politehnica” University of TimisoaraTimisoaraRomania
  2. 2.Computer Science Faculty“Aurel Vlaicu” University of AradAradRomania
  3. 3.School of Information Technology and EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations