What Is Spatio-Temporal Data Warehousing?

  • Alejandro Vaisman
  • Esteban Zimányi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5691)


In the last years, extending OLAP (On-Line Analytical Processing) systems with spatial and temporal features has attracted the attention of the GIS (Geographic Information Systems) and database communities. However, there is no a commonly agreed definition of what is a spatio-temporal data warehouse and what functionality such a data warehouse should support. Further, the solutions proposed in the literature vary considerably in the kind of data that can be represented as well as the kind of queries that can be expressed. In this paper we present a conceptual framework for defining spatio-temporal data warehouses using an extensible data type system. We also define a taxonomy of different classes of queries of increasing expressive power, and show how to express such queries using an extension of the tuple relational calculus with aggregated functions.


Geographic Information System Data Warehouse Load Limit Fact Relationship Aggregate Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cabibbo, L., Torlone, R.: Querying multidimensional databases. In: Proc. of DBPL, pp. 253–269 (1997)Google Scholar
  2. 2.
    Eder, J., Koncilia, C., Morzy, T.: The COMET metamodel for temporal data warehouses. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 83–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 5th edn. Addison-Wesley, Reading (2007)zbMATHGoogle Scholar
  4. 4.
    Gómez, L., Haesevoets, S., Kuijpers, B., Vaisman, A.: Spatial aggregation: Data model and implementation (2007) CoRR abs/0707.4304Google Scholar
  5. 5.
    Güting, R.H., de Almeida, V.T., Ansorge, D., Behr, T., Ding, Z., Höse, T., Hoffmann, F., Spiekermann, M., Telle, U.: SECONDO: An extensible DBMS platform for research prototyping and teaching. In: Proc. of ICDE, pp. 1115–1116 (2005)Google Scholar
  6. 6.
    Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  7. 7.
    Kimball, R.: The Data Warehouse Toolkit. J. Wiley and Sons, Inc., Chichester (1996)Google Scholar
  8. 8.
    Klug, A.: Equivalence of relational algebra and relational calculus query languages having aggregate functions. Journal of the ACM 29(3), 699–717 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  10. 10.
    Mendelzon, A., Vaisman, A.: Temporal queries in OLAP. In: Proc. of VLDB, pp. 242–253 (2000)Google Scholar
  11. 11.
    Orlando, S., Orsini, R., Raffaetà, A., Roncato, A., Silvestri, C.: Spatio-temporal aggregations in trajectory data warehouses. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 66–77. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Pelekis, N., Theodoridis, Y., Vosinakis, S., Panayiotopoulos, T.: Hermes: A framework for location-based data management. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1130–1134. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Pourabas, E.: Cooperation with geographic databases. In: Raffanelli, M. (ed.) Multidimensional Databases, pp. 166–199. Idea Group (2003)Google Scholar
  14. 14.
    Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Algebraic and graphic languages for OLAP manipulations. International Journal of Data Warehousing and Mining 4(1), 17–46 (2008)CrossRefGoogle Scholar
  15. 15.
    Rivest, S., Bédard, Y., Marchand, P.: Toward better suppport for spatial decision making: Defining the characteristics of spatial on-line analytical processing (SOLAP). Geomatica 55(4), 539–555 (2001)Google Scholar
  16. 16.
    Shekhar, S., Lu, C., Tan, X., Chawla, S., Vatsavai, R.: MapCube: A visualization tool for spatial data warehouses. In: Miller, H., Han, J. (eds.) Geographic data mining and Knowledge Discovery (GKD), pp. 74–109. Taylor & Francis, Abington (2001)CrossRefGoogle Scholar
  17. 17.
    Silva, J., Times, V.C., Salgado, A.C.: An open source and web based framework for geographic and multidimensional processing. In: Proc. of SAC, pp. 63–67 (2006)Google Scholar
  18. 18.
    Silva, J., Castro Vera, A.S., Oliveira, A.G., Fidalgo, R., Salgado, A.C., Times, V.C.: Querying geographical data warehouses with GeoMDQL. In: Proc. of SBBD, pp. 223–237 (2007)Google Scholar
  19. 19.
    Stefanovic, N., Han, J., Koperski, K.: Object-based selective materialization for efficient implementation of spatial data cubes. IEEE Transactions on Knowledge and Data Engineering 12(6), 938–958 (2000)CrossRefGoogle Scholar
  20. 20.
    Vega López, I.F., Snodgrass, R.T., Moon, B.: Spatiotemporal aggregate computation: A survey. IEEE Transactions on Knowledge and Data Engineering 17(2), 744–759 (2005)Google Scholar
  21. 21.
    Worboys, M.F., Duckham, M.: GIS: A Computing Perspective, 2nd edn. CRC Press, Boca Raton (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alejandro Vaisman
    • 1
  • Esteban Zimányi
    • 2
  1. 1.Universidad de Buenos AiresUniversity of Hasselt and, Transnational University of LimburgBelgium
  2. 2.Université Libre de BruxellesBelgium

Personalised recommendations