Designing, Specifying and Querying Metadata for Virtual Data Integration Systems

  • Leopoldo Bertossi
  • Gayathri Jayaraman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5697)


We show how to specify and use the metadata for a virtual and relational data integration system under the local-as-view (LAV) approach. We use XML and RuleML for representing metadata, like the global and local schemas, the mappings between the former and the latter, and global integrity constraints. XQuery is used to retrieve relevant information for query planning. The system uses an extended inverse rules algorithm for computing certain answers that is provably correct for monotone relational global queries. For query answering, evaluation engines for answer set programs on relational databases are used. The programs declaratively specify the legal instances of the integration system.


Global Schema Legal Instance Query Plan Data Integration System Stable Model Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, A., Duschka, O.: Complexity of Answering Queries Using Materialized Views. In: Proc. ACM Symposium on Principles of Database Systems (PODS 1998), pp. 254–263 (1998)Google Scholar
  2. 2.
    Bertossi, L.: Consistent Query Answering in Databases. ACM Sigmod Record 35(2), 68–76 (2006)CrossRefGoogle Scholar
  3. 3.
    Bravo, L., Bertossi, L.: Logic Programs for Consistently Querying Data Integration Systems. In: Proc. International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 10–15. Morgan Kaufmann, San Francisco (2003)Google Scholar
  4. 4.
    Bertossi, L., Bravo, L.: Consistent Query Answers in Virtual Data Integration Systems. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 42–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bernstein, P., Haas, L.: Information Integration in the Enterprise. Communications of the ACM 51(9), 72–79 (2008)CrossRefGoogle Scholar
  6. 6.
    Boley, H.: Integrating Positional and Slotted Knowledge on the Semantic Web (2005),
  7. 7.
    Boley, H., Tabet, S., Wagner, G.: Design Rationale for RuleML: A Markup Language for Semantic Web Rules. In: Proc. Semantic Web and Web Services (SWWS 2001), pp. 381–401 (2001)Google Scholar
  8. 8.
    Caniupan, M., Bertossi, L.: The Consistency Extractor System: Querying Inconsistent Databases using Answer Set Programs. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS, vol. 4772, pp. 74–88. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Duschka, O., Genesereth, M., Levy, A.: Recursive Query Plans for Data Integration. Journal of Logic Programming 43(1), 49–73 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database Systems 22(3), 364–418 (1997)CrossRefGoogle Scholar
  11. 11.
    Giannotti, F., Pedreschi, D., Sacca, D., Zaniolo, C.: Non-Determinism in Deductive Databases. In: Delobel, C., Masunaga, Y., Kifer, M. (eds.) DOOD 1991. LNCS, vol. 566, pp. 129–146. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  12. 12.
    Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Proc. ACM Symposium on Principles of Database Systems (PODS 2002), pp. 233–246 (2002)Google Scholar
  13. 13.
    Leone, N., Lio, V., Terracina, G.: DLVDB: Adding Efficient Data Management Features to ASP. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 341–345. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowledge Representation and Reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Maclachlan, A., Boley, H.: Semantic Web Rules for Business Information. In: Proc. IASTED International Conference on Web Technologies, Applications and Services, pp. 146–153 (2005)Google Scholar
  16. 16.
    Anatomy of an XML Database: Oracle Berkeley DB XML. An Oracle white paper (2006),
  17. 17.
    Ullman, J.: Information Integration Using Logical Views. Theoretical Computer Science 239(2), 189–210 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wiederhold, G.: Mediators in the Architecture of Future Information Systems. IEEE Computer 25(3), 38–49 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Leopoldo Bertossi
    • 1
    • 2
  • Gayathri Jayaraman
    • 3
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada
  2. 2.University of ConcepcionChile
  3. 3.Dept. Systems and Computer EngineeringCarleton UniversityOttawaCanada

Personalised recommendations