Advertisement

Abstract

Motivated by questions in property testing, we search for linear error-correcting codes that have the “single local orbit” property: they are specified by a single local constraint and its translations under the symmetry group of the code. We show that the dual of every “sparse” binary code whose coordinates are indexed by elements of \({\mathbb{F}}_{2^n}\) for prime n, and whose symmetry group includes the group of non-singular affine transformations of \({\mathbb{F}}_{2^n}\), has the single local orbit property. (A code is sparse if it contains polynomially many codewords in its block length.) In particular this class includes the dual-BCH codes for whose duals (BCH codes) simple bases were not known. Our result gives the first short (O(n)-bit, as opposed to \(\exp(n)\)-bit) description of a low-weight basis for BCH codes. If 2 n  − 1 is a Mersenne prime, then we get that every sparse cyclic code also has the single local orbit.

Keywords

Locally testable codes affine/cyclic invariance single orbit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing Reed-Muller codes. IEEE Transactions on Information Theory 51(11), 4032–4039 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. Journal of Computer and System Sciences 47(3), 549–595 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bourgain, J.: Mordell’s exponential sum estimate revisited. J. Amer. Math. Soc. 18(2), 477–499 (2005) (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bourgain, J.: Some arithmetical applications of the sum-product theorems in finite fields. In: Geometric aspects of functional analysis. Lecture Notes in Math., vol. 1910, pp. 99–116. Springer, Berlin (2007)CrossRefGoogle Scholar
  5. 5.
    Bourgain, J., Katz, N., Tao, T.: A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14(1), 27–57 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bourgain, J., Chang, M.-C.: A Gauss sum estimate in arbitrary finite fields. C. R. Math. Acad. Sci. Paris 342(9), 643–646 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bourgain, J., Konyagin, S.V.: Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order. C. R. Math. Acad. Sci. Paris 337(2), 75–80 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. JACM 45(4), 653–750 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost-linear length. J. ACM 53(4), 558–655 (2002); Preliminary version in FOCS 2002MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jutla, C.S., Patthak, A.C., Rudra, A., Zuckerman, D.: Testing low-degree polynomials over prime fields. In: FOCS 2004, pp. 423–432. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  11. 11.
    Kaufman, T., Litsyn, S.: Almost orthogonal linear codes are locally testable. In: FOCS, pp. 317–326. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  12. 12.
    Kaufman, T., Litsyn, S.: Long extended BCH codes are spanned by minimum weight words. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 285–294. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Kaufman, T., Ron, D.: Testing polynomials over general fields. SIAM J. Comput. 36(3), 779–802 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kaufman, T., Sudan, M.: Sparse random linear codes are locally decodable and testable. In: FOCS, pp. 590–600. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  15. 15.
    Kaufman, T., Sudan, M.: Algebraic property testing: the role of invariance. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 403–412. ACM Press, New York (2008)Google Scholar
  16. 16.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier/North-Holland, Amsterdam (1981)Google Scholar
  17. 17.
    Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    van Lint, J.H.: Introduction to Coding Theory, 3rd edn. Graduate Texts in Mathematics, vol. 86. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Elena Grigorescu
    • 1
  • Tali Kaufman
    • 1
  • Madhu Sudan
    • 2
  1. 1.MITCambridgeUSA
  2. 2.Microsoft ResearchCambridgeUSA

Personalised recommendations