Referring to the query complexity of property testing, we prove the existence of a rich hierarchy of corresponding complexity classes. That is, for any relevant function q, we prove the existence of properties that have testing complexity Θ(q). Such results are proven in three standard domains often considered in property testing: generic functions, adjacency predicates describing (dense) graphs, and incidence functions describing bounded-degree graphs. While in two cases the proofs are quite straightforward, the techniques employed in the case of the dense graph model seem significantly more involved. Specifically, problems that arise and are treated in the latter case include (1) the preservation of distances between graph under a blow-up operation, and (2) the construction of monotone graph properties that have local structure.


Property Testing Graph Properties Monotone Graph Properties Graph Blow-up One-Sided vs Two-Sided Error Adaptivity vs Non-adaptivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABI]
    Alon, N., Babai, L., Itai, A.: A fast and Simple Randomized Algorithm for the Maximal Independent Set Problem. J. of Algorithms 7, 567–583 (1986)Google Scholar
  2. [AFKS]
    Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient Testing of Large Graphs. Combinatorica 20, 451–476 (2000)Google Scholar
  3. [AFNS]
    Alon, N., Fischer, E., Newman, I., Shapira, A.: A Combinatorial Characterization of the Testable Graph Properties: It’s All About Regularity. In: 38th STOC, pp. 251–260 (2006)Google Scholar
  4. [AGHP]
    Alon, N., Goldreich, O., Hastad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Journal of Random structures and Algorithms 3(3), 289–304 (1992)Google Scholar
  5. [AS]
    Alon, N., Shapira, A.: Every Monotone Graph Property is Testable. SIAM Journal on Computing 38, 505–522 (2008)Google Scholar
  6. [BSS]
    Benjamini, I., Schramm, O., Shapira, A.: Every Minor-Closed Property of Sparse Graphs is Testable. In: 40th STOC, pp. 393–402 (2008)Google Scholar
  7. [BLR]
    Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to Numerical Problems. JCSS 47(3), 549–595 (1993)Google Scholar
  8. [BHR]
    Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: 3CNF Properties Are Hard to Test. SIAM Journal on Computing 35(1), 1–21 (2005)Google Scholar
  9. [BOT]
    Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-colorability in bounded-degree graphs. In: 43rd FOCS, pp. 93–102 (2002)Google Scholar
  10. [EKK+]
    Ergun, F., Kannan, S., Kumar, S.R., Rubinfeld, R., Viswanathan, M.: Spot-checkers. JCSS 60(3), 717–751 (2000)Google Scholar
  11. [F]
    Fischer, E.: The art of uninformed decisions: A primer to property testing. Bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001)Google Scholar
  12. [FM]
    Fischer, E., Matsliah, A.: Testing Graph Isomorphism. In: 17th SODA, pp. 299–308 (2006)Google Scholar
  13. [GGL+]
    Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing Monotonicity. Combinatorica 20(3), 301–337 (2000)Google Scholar
  14. [GGR]
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the ACM, 653–750 (July 1998)Google Scholar
  15. [GKNR]
    Goldreich, O., Krivelevich, M., Newman, I., Rozenberg, E.: Hierarchy Theorems for Property Testing. ECCC, TR08-097 (2008)Google Scholar
  16. [GR1]
    Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. Algorithmica 32(2), 302–343 (2002)Google Scholar
  17. [GR2]
    Goldreich, O., Ron, D.: A Sublinear Bipartitness Tester for Bounded Degree Graphs. Combinatorica 19(3), 335–373 (1999)Google Scholar
  18. [GT]
    Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties. Random Structures and Algorithms 23(1), 23–57 (2003)Google Scholar
  19. [LNS]
    Lachish, O., Newman, I., Shapira, A.: Space Complexity vs. Query Complexity. Computational Complexity 17, 70–93 (2008)Google Scholar
  20. [NN]
    Naor, J., Naor, M.: Small-bias Probability Spaces: Efficient Constructions and Applications. SIAM J. on Computing 22, 838–856 (1993)Google Scholar
  21. [PRR]
    Parnas, M., Ron, D., Rubinfeld, R.: Testing Membership in Parenthesis Laguages. Random Structures and Algorithms 22(1), 98–138 (2003)Google Scholar
  22. [P]
    Pikhurko, O.: An Analytic Approach to Stability (2009),
  23. [R]
    Ron, D.: Property testing. In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim, J.D.P. (eds.) Handbook on Randomization, vol. II, pp. 597–649 (2001)Google Scholar
  24. [RS]
    Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)Google Scholar
  25. [S]
    Shaltiel, R.: Recent Developments in Explicit Constructions of Extractors. In: Current Trends in Theoretical Computer Science: The Challenge of the New Century. Algorithms and Complexity, vol. 1, pp. 67–95. World scientific, Singapore (2004); Preliminary version in Bulletin of the EATCS, vol. 77, pp. 67–95 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Oded Goldreich
    • 1
  • Michael Krivelevich
    • 2
  • Ilan Newman
    • 3
  • Eyal Rozenberg
    • 4
  1. 1.Faculty of Math. and Computer ScienceWeizmann InstituteRehovotIsrael
  2. 2.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Computer ScienceHaifa UniversityHaifaIsrael
  4. 4.Department of Computer ScienceTechnionHaifaIsrael

Personalised recommendations