Advertisement

Abstract

Exchanging messages between nodes of a network (e.g., embedded computers) is a fundamental issue in real-time systems involving critical routing and scheduling decisions. In order for messages to arrive on time, one has to determine a suitable (short) origin-destination path for each message and resolve conflicts between messages whose paths share a communication link of the network. We provide efficient routing strategies yielding origin-destination paths of bounded dilation and congestion. In particular, we can give good a priori guarantees on the time required to send a given set of messages which, under certain reasonable conditions, implies that all messages can be scheduled to reach their destination on time. Our algorithm uses a path-based LP-relaxation and iterative rounding. Finally, for message routing along a directed path (which is already \(\mathcal{NP}\)-hard), we identify a natural class of instances for which a simple scheduling heuristic yields provably optimal solutions.

Keywords

Destination Node Directed Path Short Path Problem Fractional Solution Minimum Makespan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leung, J.Y.T., Tam, T.W., Wong, C.S., Young, G.H.: Routing messages with release time and deadline constraints. Journal of Parallel and Distributed Computing 31, 65–76 (1995)CrossRefGoogle Scholar
  2. 2.
    Leung, J.Y.T., Tam, T.W., Wong, C.S., Young, G.H.: Online routing of real-time messages. Journal of Parallel and Distributed Computing 34, 211–217 (1996)CrossRefGoogle Scholar
  3. 3.
    Leung, J.Y.-T.: Handbook of Scheduling: Algorithms, Models and Performance Analysis. Chapman and Hall/CRC, Boca Raton (2004)Google Scholar
  4. 4.
    Leighton, F.: Methods for message routing in parallel machines. In: Proceedings of the ACM Symposium on the Theory of Computing, pp. 77–96 (1992)Google Scholar
  5. 5.
    Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient algorithms and complexity. Theoretical Computer Science 379, 387–404 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Williamson, D.P., Hall, L.A., Hoogeveen, J.A., Hurkens, C.A.J., Lenstra, J.K., Sevast’janov, A.V., Shmoys, D.B.: Short shop schedules. Operations Research 45, 288–294 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Feige, U., Scheideler, C.: Improved bounds for acyclic job shop scheduling. Combinatorica 3(22), 361–399 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Czumaj, A., Scheideler, C.: A new algorithmic approach to the general Lovász Local Lemma with applications to scheduling and satisfiability problems. In: Proc. of the thirty-second annual ACM symposium on Theory of computing, Portland, USA, pp. 38–47 (2000)Google Scholar
  9. 9.
    Leigthon, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job shop scheduling in O(congestion+dilation) steps. Combinatorica 14, 167–186 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Leigthon, F.T., Maggs, B.M., Richa, A.: Fast algorithms for finding O(congestion+dilation) packet routing schedules. Combinatorica 19, 375–401 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Busch, C., Magdon-Ismail, M., Mavronicolas, M.: Universal bufferless packet switching. SIAM Journal on Computing 37, 1139–1162 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Srinivasan, A., Teo, C.-P.: A constant-factor approximation algorithm for packet routing and balancing local vs. global criteria. SIAM Journal on Computing 30(6), 2051–2068 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fleischer, L., Skutella, M.: Quickest flows over time. SIAM Journal on Computing 36, 1600–1630 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and Co., New York (1979)zbMATHGoogle Scholar
  15. 15.
    Grtschel, M., Lovsz, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Karp, R.M., Leigthon, F.T., Rivest, R.L., Thompson, C.D., Vazirani, U.V., Vazirani, V.V.: Global wire routing in two-dimensional arrays. Algorithmica 2, 113–129 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hassin, R.: Approximation schemes for the restricted shortest path problem. Math. Oper. Research 17, 36–42 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lorenz, D.H., Raz, D.: A simple efficient approximation scheme for the restricted shortest path problem. Oper. Res. Letters 28, 213–219 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Phillips, C.A.: The network inhibition problem. In: Proc. of the 25th Annual ACM Symposium on the Theory of Computing, San Diego, CA, pp. 776–785 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ronald Koch
    • 1
  • Britta Peis
    • 1
  • Martin Skutella
    • 1
  • Andreas Wiese
    • 1
  1. 1.Institut für MathematikTU BerlinBerlinGermany

Personalised recommendations