Advertisement

Mechanical Weed Control

  • Hans W. Griepentrog
  • Athanasios P. DedousisEmail author
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 20)

Abstract

The aim of this chapter is to highlight and focus on novel and promising developments in soil-engaging intra-row hoeing. Conventional weeding tools for intra-row treatments based on selectivity are limited in control efficacy. Four intra-row weeders based on computer-controlled soil-engaging tools are described. They all rely on input information about the crop plant locations for the tool control because they use non-selective principles. These systems use crop detection methods based on image analysis techniques, except for the tine rotor which uses geo-referenced seeds. Through these technological developments it is possible to control weeds with reduced or no use of herbicides, thereby meeting consumer and environmental demands.

Keywords

Weed Control Mechanical Weed Control Weed Control Efficiency Ground Wheel Minimize Crop Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aastrand B, Baerveldt AJ (2005) A vision based row-following system for agricultural field machinery. Mechatronics 15(2):251–269CrossRefGoogle Scholar
  2. Bakker T (2003) Autonomous weeding literature review. SCO Report 03–01, Wageningen University: Systems and Control Group.Google Scholar
  3. Bleeker P (2005) First experiments with intra-row weed control with a camera. In: Proceedings of the spatial and dynamic weed measurements and innovative weeding technologies, Bygholm, Denmark, European Weed Research SocietyGoogle Scholar
  4. Dedousis AP, Godwin RJ, O'Dogherty MJ, Tillett ND, Grundy AC (2007) Inter and intra-row mechanical weed control with rotating discs. In: Stafford JV (ed) Precision Agriculture 07. Wageningen Academic Publishers, Wageningen, NL, pp 493–498Google Scholar
  5. Dedousis AP (2007) An investigation into the design of precision weeding mechanisms for inter and intra-row weed control. PhD thesis. Cranfield University, SilsoeGoogle Scholar
  6. Dijksterhuis HL, Van Willigenburg LG, Van Zuydam RP (1998) Centimetre-precision guidance of moving implements in the open field: a simulation based on GPS measurements. Comput Electron Agr 20:185–197CrossRefGoogle Scholar
  7. Downey D, Giles D, Slaughter DC (2003): Ground based vision identification for weed mapping using DGPS. In: Proceedings ASAE Annual International Meeting Las Vegas, Nevada, USA, ASAE, paper no. 03-1005Google Scholar
  8. Griepentrog HW, Norremark M, Nielsen H, Blackmore BS (2003) Individual plant care in cropping systems. In: Stafford JV, Werner A (eds) Proceedings 4th European Conference on Precision Agriculture ECPA, 26.6.2003 Berlin. Wageningen Academic Press, Wageningen, NL, pp 247–251Google Scholar
  9. Griepentrog HW, Norremark M, Nielsen J (2006) Autonomous intra-row rotor weeding based on GPS. In: Proceedings CIGR World Congress – Agricultural Engineering for a Better World, 9.2006 Bonn, Germany, VDI, Düsseldorf, GermanyGoogle Scholar
  10. Griepentrog HW, Norremark M, Nielsen J, Soriano Ibarra J (2007) Autonomous inter-row hoeing using GPS based side-shift control. Agricultural Engineering International – The CIGR Ejournal IX(Manuscript ATOE 07 005)Google Scholar
  11. Griepentrog HW, Norremark M, Nielsen H, Blackmore BS (2005) Seed mapping of sugar beet. Precis Agr 6(2):157–165CrossRefGoogle Scholar
  12. Home M (2003) An investigation into the design of cultivation systems for inter- and intra-row weed control. EngD Thesis, Cranfield University, Silsoe, UKGoogle Scholar
  13. Laber, H. (1999): Effizienz mechanischer Unkrautregulationsmaßnahmen im Freilandgemüsebau. Dr. rer. hort. Thesis, University of HanoverGoogle Scholar
  14. Lampkin N (1994) The living soil. Organic Farming, Chap. 2. Farming Press, Ipswich, UK, pp 13–51Google Scholar
  15. Mathiassen SK, Bak T, Christensen S, Kudsk P (2006) The effect of laser treatment as a weed control method. Biosystems Eng 95(4):497–505CrossRefGoogle Scholar
  16. Norremark M, Griepentrog HW (2004) Analysis and definition of the close-to-crop area in relation to robotic weeding. In: Proceedings 6th workshop of the EWRS working group ‘Physical and Cultural Weed Control', 8.3.2004 Lillehammer, Norway, p 127–140Google Scholar
  17. Norremark M, Griepentrog HW, Nielsen J, Soegaard HT (2008) The development and assessment of the accuracy of an autonomous GPS-based system for intra-row mechanical weed control in row crops. Biosystems Eng 101(4):396–410CrossRefGoogle Scholar
  18. O'Dogherty MJ, Godwin RJ, Dedousis AP, Brighton JL, Tillett ND (2007) A mathematical model of the kinematics of a rotating disc for inter- and intra-row hoeing. Biosystems Eng 96(2):169–179CrossRefGoogle Scholar
  19. Pilarski T, Happold M, Pangels H, Ollis M, Fitzpatrick K, Stentz A (2002) The demeter system for automated harvesting. Auton Robots 13:9–20CrossRefGoogle Scholar
  20. Rasmussen J (1992) Testing harrows for mechanical control of annual weeds in agricultural crops. Weed Res 32:267–274CrossRefGoogle Scholar
  21. Sogaard HT, Lund I (2007) Application accuracy of a machine vision-controlled robotic micro-dosing system. Biosystems Eng 96(3):315–322CrossRefGoogle Scholar
  22. Sogaard HT, Olsen HJ (2003) Determination of crop rows by image analysis without segmentation. Comput Electron Agr 38(2):141–158CrossRefGoogle Scholar
  23. Tillett ND, Hague T, Grundy AC, Dedousis AP, Tillett ND, Hague T, Grundy AC, Dedousis AP (2008) Mechanical within-row weed control for transplanted crops using computer vision. Biosystems Eng 99(2):171–178CrossRefGoogle Scholar
  24. Tillett ND (1991) Automatic guidance sensors for agricultural field machines – a review. J Agric Eng Res 50(3):167–187CrossRefGoogle Scholar
  25. Van der Weide RY, Bleeker PO, Achten VTJM, Lotz LAP, Fogelberg F, Melander B (2008) Innovation in mechanical weed control in crop rows. Weed Res 48(3):215–224CrossRefGoogle Scholar
  26. Van Zuydam RP, Sonneveld C, Naber H (1995) Weed control in sugar beet by precision guided implements. Crop Prot 14(4):335–340CrossRefGoogle Scholar
  27. Vanhala P, Kurstjens D, Ascard J, Bertram A, Cloutier D, Mead R, Raffaelli M, Rasmussen J (2004) Guidelines for physical weed control research – flame weeding, weed harrowing and intra-row cultivation. In: Proceedings 6th EWRS Workshop on Physical and Cultural Weed Control, 8.3.2004 Lillehammer, NorwayGoogle Scholar
  28. Wißerodt E, Grimm J, Kemper M, Kielhorn A, Kleine-Hartlage H, Nardmann M, Naescher J, Trautz D (1999) Gesteuerte Hacke zur Beikrautregulierung innerhalb der Reihe von Pflanzenkulturen. In: Proceedings VDI-Tagung Landtechnik Braunschweig, Germany, VDI-Verlag, Düsseldorf, Germany, pp 155–160Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Centre for Research and Technology, Institute of Technology and Management of Agricultural Eco-SystemsThessalyGreece
  2. 2.University of Copenhagen, Institute of Agriculture and EcologyCopenhagenDenmark

Personalised recommendations