Designing User Interfaces for Smart-Applications for Operating Rooms and Intensive Care Units

  • Martin Christof Kindsmüller
  • Maral Haar
  • Hannes Schulz
  • Michael Herczeg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5727)

Abstract

Today’s physicians and nurses working in operating rooms and intensive care units have to deal with an ever increasing amount of data. More and more medical devices are delivering information, which has to be perceived and interpreted in regard to patient status and the necessity to adjust therapy. The combination of high information load and insufficient usability creates a severe challenge for the health personnel with respect to proper monitoring of these devices respective to acknowledging alarms and timely reaction to critical incidents. Smart Applications are a new kind of decision support systems that incorporate medical expertise in order to help health personnel in regard to diagnosis and therapy. By means of a User Centered Design process of two Smart Applications (anaesthesia monitor display, diagnosis display), we illustrate which approach should be followed and which processes and methods have been successfully applied in fostering the design of usable medical devices.

Keywords

Smart-Applications Safety Critical Systems Healthcare User Interface OR ICU 

References

  1. 1.
    Backhaus, C., Friesdorf, W.: Verloren im Ballungsraum der Intensivstation. In: Forschung Aktuell 2006 Gesundheitstechnologien. Technische Universität Berlin, Berlin (2006)Google Scholar
  2. 2.
    Obradovich, J.H., Woods, D.D.: Users as Designers: How People Cope with Poor HCI Design in Computer-Based Medical Devices. Human Factors 38(4), 574–592 (1996)CrossRefGoogle Scholar
  3. 3.
    Wears, R.L., Cook, R.I.: Automation, Interaction, Complexity, and Failure: A Case Study. Reliability engineering & systems safety 91(12), 1494–1501 (2006)CrossRefGoogle Scholar
  4. 4.
    Matern, U., Koneczny, S., Scherrer, M., Gerlings, T.: Arbeitsbedingungen am Arbeitsplatz OP. Deutsches Ärzteblatt 103(47), 3187–3192 (2006)Google Scholar
  5. 5.
    Parasuraman, R., Molloy, R., Mouloua, M., Hilburn, B.: Monitoring of Automated Systems. In: Parasuraman, R., Mouloua, M. (eds.) Automation and Human Performance: Theory and Applications. Lawrence Erlbaum, Mahwah (1996)Google Scholar
  6. 6.
    Coiera, E.W., Tombs, V.J., Clutton-Brock, T.H.: Attentional overload as a fundamental cause of human error in monitoring. Hewlett Packard Laboratories Technical Report (1996)Google Scholar
  7. 7.
    Norman, D.A.: The ’problem’ with automation: inappropriate feedback and interaction, not ’over-automation’. Philosophical Transactions of the Royal Society of London 327, 585–593 (1990)CrossRefGoogle Scholar
  8. 8.
    Dreyfus, H.L., Dreyfus, S.E.: Mind over Machine. Free Press, New York (1986)Google Scholar
  9. 9.
    Ericsson, K.A., Charness, N.: Expert performance: Its structure and acquisition. American Psychologist 49, 725–747 (1994)CrossRefGoogle Scholar
  10. 10.
    Friesdorf, W.: Überwachung am Intensivbett - Informationsrepräsentation. In: Friesdorf, W., Schwilk, B., Hähnel, J. (eds.) Ergonomie in der Intensivmedizin. Bibliomed Medizinische Verlagsgesellschaft, Melsungen (1990)Google Scholar
  11. 11.
    Hecker, E., Hölscher, U.: Informationsverarbeitung am Erwachsenen-Intensivbett – ein Lösungsansatz. In: Friesdorf, W., Schwilk, B., Hähnel, J. (eds.) Ergonomie in der Intensivmedizin. Bibliomed Medizinische Verlagsgesellschaft, Melsungen (1990)Google Scholar
  12. 12.
    Sailors, R.M., East, T.D.: Clinical informatics: 2000 and beyond. In: Proceedings AMIA Symposium (1999)Google Scholar
  13. 13.
    Berner, E.S., Moss, J.: Informatics Challenges for the Impending Patient Information Explosion. Journal of the American Medical Informatics Association 12, 614–617 (2005)CrossRefGoogle Scholar
  14. 14.
    Garg, A.X., Adhikari, N.K.J., McDonald, H., Rosas-Arellano, M.P., Devereaux, P.J., Beyene, J., Sam, J., Haynes, R.B.: Effects of Computerized Clinical Decision Support Systems on Practitioner Performance and Patient Outcomes. A Systematic Review. Journal of the American Medical Association 293, 1223–1238 (2005)CrossRefGoogle Scholar
  15. 15.
    Payne, T.H.: Computer Decision Support Systems. Chest 118, 47–52 (2000)CrossRefGoogle Scholar
  16. 16.
    Mueller, M.L., Ganslandt, T., Frankewitsch, T., Krieglstein, C.F., Senninger, N., Prokosch, H.U.: Workflow analysis and evidence-based medicine: towards integration of knowledge-based functions in hospital information systems. In: Proceedings of the AMIA Symposium, p. 330 (1999)Google Scholar
  17. 17.
    Kawamoto, K., Houlihan, C.A., Balas, E.A., Lobach, D.F.: Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. British Medical Journal 330, 765–772 (2005)CrossRefGoogle Scholar
  18. 18.
    Parasuraman, R., Miller, C.A.: Trust and etiquette in high-criticality automated systems. Communications of the ACM 47(4), 51–55 (2004)CrossRefGoogle Scholar
  19. 19.
    DICOM. Medical Imaging & Technology Alliance, http://medical.nema.org
  20. 20.
    Herczeg, M.: Intention-Based Supervisory Control - Kooperative Mensch-Maschine-Kommunikation in der Prozessführung. In: Grandt, M., Gärnter, K.-P. (eds.) Situation Awareness in der Fahrzeug- und Prozessführung. Deutsche Gesellschaft für Luft- und Raumfahrt, Bonn (2002)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Martin Christof Kindsmüller
    • 1
  • Maral Haar
    • 2
  • Hannes Schulz
    • 3
  • Michael Herczeg
    • 1
  1. 1.Institute for Multimedia & Interactive SystemsUniversity of LübeckLübeckGermany
  2. 2.Drägerwerk AGLübeckGermany
  3. 3.Dräger Medical AG & Co. KGLübeckGermany

Personalised recommendations