PressureMove: Pressure Input with Mouse Movement

  • Kang Shi
  • Sriram Subramanian
  • Pourang Irani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5727)

Abstract

We present PressureMove a pressure based interaction technique that enables simultaneous control of pressure input and mouse movement. Simultaneous control of pressure and mouse movement can support tasks that require control of multiple parameters, like rotation and translation of an object, or pan-and-zoom. We implemented four variations of PressureMove techniques for a 2D position and orientation matching task where pressure manipulations mapped to object orientation and mouse movement to object translation. The Naive technique mapped raw pressure-sensor values to the object rotation; the Rate-based technique mapped discrete pressure values to speed of rotation and Hierarchical and Hybrid techniques that use a two-step approach to control orientation using pressure. In user study that compared the four techniques with the default mouse-only technique we found that Rate-based PressureMove was the fastest technique with the least number of crossings and as preferred as the default mouse in terms of user-preference. We discuss the implications of our user study and present several design guidelines.

Keywords

Pressure-input integrality of input dimensions pressure and movement alternative interaction techniques 

References

  1. 1.
    Balakrishnan, R., Baudel, T., Kurtenbach, G., Fitzmaurice, G.: The Rockin’Mouse: integral 3D manipulation on a plane. In: Proc. CHI 1997, pp. 311–318 (1997)Google Scholar
  2. 2.
    Cechanowicz, J., Irani, P., Subramanian, S.: Augmenting the mouse with pressure sensitive input. In: Proc. CHI 2007, pp. 1385–1394 (2007)Google Scholar
  3. 3.
    Forlines, C., Shen, C., Buxton, B.: Glimpse: a novel input model for multi-level devices. In: Proc. CHI 2005 Ext. Abstracts, pp. 1375–1378 (2005)Google Scholar
  4. 4.
    Kattinakere, R.S., Grossman, T., Subramanian, S.: Modeling steering within above-the-surface interaction layers. In: Proc. CHI 2007, pp. 317–326 (2007)Google Scholar
  5. 5.
    Kruger, R., Carpendale, S., Scott, S.D., Tang, A.: Fluid integration of rotation and translation. In: Proc. CHI 2005, pp. 601–610 (2005)Google Scholar
  6. 6.
    Kurtenbach, G., Buxton, W.: User learning and performance with marking menus. In: Proc. CHI 1994, pp. 258–264 (1994)Google Scholar
  7. 7.
    MacKenzie, I.S., Soukoreff, R.W., Pal, C.: A two-ball mouse affords three degrees of freedom. In: Proc. CHI 1997 Ext. Abstracts, pp. 303–304 (1997)Google Scholar
  8. 8.
    Masliah, M.R., Milgram, P.: Measuring the allocation of control in a 6 degree-of-freedom docking experiment. In: Proc. CHI 2000, pp. 25–32 (2000)Google Scholar
  9. 9.
  10. 10.
    Mizobuchi, S., Terasaki, S., Keski-Jaskari, T., Nousiainen, J., Ryynanen, M., Silfverberg, M.: Making an impression: force-controlled pen input for handheld devices. In: Proc. CHI 2005 Ext. Abstracts, pp. 1661–1664 (2005)Google Scholar
  11. 11.
    Greenberg, S., Fitchett, C.: Phidgets: easy development of physical interfaces through physical widgets. In: Proc. UIST, pp. 209–218 (2001)Google Scholar
  12. 12.
    Jacob, R.J., Sibert, L.E.: The perceptual structure of multidimensional input device selection. In: Proc. CHI 1992, pp. 211–218 (1992)Google Scholar
  13. 13.
    Jacob, R.J., Sibert, L.E., McFarlane, D.C., Mullen, M.P.: Integrality and separability of input devices. ACM Trans. Comput.-Hum. Interact. 1(1), 3–26 (1994)CrossRefGoogle Scholar
  14. 14.
    Ramos, G., Balakrishnan, R.: Zliding: fluid zooming and sliding for high precision parameter manipulation. In: Proc. UIST 2005, pp. 143–152 (2005)Google Scholar
  15. 15.
    Ramos, G.A., Balakrishnan, R.: Pressure marks. In: Proc. CHI 2007, pp. 1375–1384 (2007)Google Scholar
  16. 16.
    Ramos, G., Boulos, M., Balakrishnan, R.: Pressure widgets. In: Proc. CHI 2004, pp. 487–494 (2004)Google Scholar
  17. 17.
    Shi, K., Irani, P., Gustafson, S., Subramanian, S.: PressureFish: A Method to Improve Control of Discrete Pressure-based Input. In: Proc. CHI 2008, pp. 1295–1298 (2008) Google Scholar
  18. 18.
    Wang, Y., MacKenzie, C.L., Summers, V.A., Booth, K.S.: The structure of object transportation and orientation in human-computer interaction. In: Proc. CHI 1998, pp. 312–319 (1998)Google Scholar
  19. 19.
    Zeleznik, R., Miller, T., Forsberg, A.: Pop through mouse button interactions. In: Proc. UIST 2001, pp. 195–196 (2001)Google Scholar
  20. 20.
    Zhai, S.: User Performance in Relation to 3D Input Device Design. Computer Graphics 32(4), 50–54 (1998)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhai, S., Milgram, P., Buxton, W.: The influence of muscle groups on performance of multiple degree-of-freedom input. In: Proc. CHI 1996, pp. 308–315 (1996)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Kang Shi
    • 1
  • Sriram Subramanian
    • 2
  • Pourang Irani
    • 1
  1. 1.Computer Science DepartmentUniversity of ManitobaWinnipegCanada
  2. 2.Computer Science DepartmentUniversity of BristolBristolUK

Personalised recommendations