Acquisition of Animated and Pop-Up Targets

  • Guillaume Faure
  • Olivier Chapuis
  • Michel Beaudouin-Lafon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5727)


Pop-up targets, such as the items of popup menus, and animated targets, such as the moving windows in Mac OS X Exposé, are common in current desktop environments. This paper describes an initial study of pointing on pop-up and animated targets. Since we are interested in expert performance, we study the situation where the user has previous knowledge of the (final) position of the target. We investigate the effect of the DELAY factor, i.e. the delay before the target pops up (for pop-up targets) or the duration of the animation (for animated targets). We find little difference between the two techniques in terms of pointing performance (time and error), however a kinematic analysis reveals differences in the nature of the pointing movement. We also find that movement time increases with DELAY, but the degradation is smaller when the target is farther away than when it is closer. Indeed, larger distances require a longer movement time therefore the target reaches its destination while the participant is still moving the pointer, providing more opportunity to correct the movement than with short distances. Finally we take into account these results to propose an extension to Fitts’ Law that better predicts movement time for these tasks.


Pop-up targets Animated targets Movement analysis Fitts’ 


  1. 1.
    Accot, J., Zhai, S.: Refining Fitts’ law models for bivariate pointing. In: Proc. Human Factors in Computing Systems (CHI 2003), pp. 193–200. ACM Press, New York (2003)CrossRefGoogle Scholar
  2. 2.
    Aivar, M., Hayhoe, M., Chizk, C., Mruczek, R.: Spatial memory and saccadic targeting in a natural task. Journal of Vision 5(3:3), 177–193 (2005)Google Scholar
  3. 3.
    Appert, C., Beaudouin-Lafon, M.: SwingStates: Adding state machines to Java and the Swing toolkit. Software: Practice and Experience 38(11), 1149–1182 (2008)Google Scholar
  4. 4.
    Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M., Tandler, P., Bederson, B., Zierlinger, A.: Drag-and-pop and drag-and-pick: Techniques for accessing remote screen content on touch- and pen-operated systems. In: Proc. INTERACT 2003, pp. 57–64. IOS Press, IFIP (2003)Google Scholar
  5. 5.
    Bezerianos, A., Balakrishnan, R.: The vacuum: facilitating the manipulation of distant objects. In: Proc. Human Factors in Computing Systems (CHI 2005), pp. 361–370. ACM Press, New York (2005)Google Scholar
  6. 6.
    Bock, O., Eckmiller, R.: Goal-directed arm movements in absence of visual guidance: evidence for amplitude rather than position control. Exp. Brain Res. 62(3), 451–458 (1986)CrossRefGoogle Scholar
  7. 7.
    Cao, X., Li, J.J., Balakrishnan, R.: Peephole pointing: Modeling acquisition of dynamically revealed targets. In: Proc. Human Factors in Computing Systems (CHI 2008), pp. 1699–1709. ACM Press, New York (2008)Google Scholar
  8. 8.
    Chapuis, O.: Gestion des fenêtres: enregistrement et visualisation de l’interaction. In: Proc. Journées Francophones d’Interaction Homme-Machine (IHM 2005), pp. 255–258. ACM, New York (2005)Google Scholar
  9. 9.
    Cockburn, A., Gutwin, C., Greenberg, S.: A predictive model of menu performance. In: Proc. Human Factors in Computing Systems (CHI 2007), pp. 627–636. ACM Press, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Faure, G., Chapuis, O., Roussel, N.: Power tools for copying and moving: Useful stuff for your desktop. In: Proc. Human Factors in Computing Systems (CHI 2009), pp. 1675–1678. ACM Press, New York (2009)Google Scholar
  11. 11.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47, 381–391 (1954)CrossRefGoogle Scholar
  12. 12.
    Flash, T., Henis, E.: Arm trajectory modifications during reaching towards visual targets. J. Cognitive Neuroscience 3(3), 220–230 (1991)CrossRefGoogle Scholar
  13. 13.
    Gonzalez, C.: Does animation in user interfaces improve decision making? In: Proc. Human Factors in Computing Systems (CHI 1996), pp. 27–34. ACM Press, New York (1996)Google Scholar
  14. 14.
    Hinckley, K., Guimbretiere, F., Baudisch, P., Sarin, R., Agrawala, M., Cutrell, E.: The springboard: multiple modes in one spring-loaded control. In: Proc. Human Factors in Computing Systems (CHI 2006), pp. 181–190. ACM Press, New York (2006)Google Scholar
  15. 15.
    Hoffmann, E.R.: Capture of moving targets: a modification of Fitts’ law. Ergonomics 34, 211–220 (1991)CrossRefGoogle Scholar
  16. 16.
    Hornof, A.J., Kieras, D.E.: Cognitive modeling demonstrates how people use anticipated location knowledge of menu items. In: Proc. Human Factors in Computing Systems (CHI 1999), pp. 410–417. ACM Press, New York (1999)Google Scholar
  17. 17.
    Jeannerod, M.: The neural and behavioural organization of goal directed movements. Clarendon Press, Oxford (1988)Google Scholar
  18. 18.
    Kurtenbach, G., Buxton, W.: Issues in combining marking and direct manipulation techniques. In: Proc. User Interface Software and Technology (UIST 1991), pp. 137–144. ACM Press, New York (1991)Google Scholar
  19. 19.
    MacKenzie, I.S.: Fitts’ law as a research and design tool in human-computer interaction. Human-Computer Interaction 7, 91–139 (1992)CrossRefGoogle Scholar
  20. 20.
    Meyer, D., Smith, J., Kornblum, S., Abrams, R., Wright, C.: Optimality in human motor performance: Ideal control of rapid aimed movements. Psych. Review 95, 340–370 (1988)CrossRefGoogle Scholar
  21. 21.
    Mould, D., Gutwin, C.: The effects of feedback on targeting with multiple moving targets. In: Proc. Graphics Interface (GI 2004), Canadian Hum.-Comp. Comm. Soc., pp. 25–32 (2004)Google Scholar
  22. 22.
    Obendorf, H., Weinreich, H., Herder, E., Mayer, M.: Web page revisitation revisited: Implications of a long-term click-stream study of browser usage. In: Proc. Human Factors in Computing Systems (CHI 2007), pp. 597–606. ACM, New York (2007)CrossRefGoogle Scholar
  23. 23.
    Plamondon, R., Alimi, A.: Speed/accuracy trade-offs in target-directed movements. Behavioral and Brain Sciences 20(2), 279–349 (1997)Google Scholar
  24. 24.
    Schlienger, C., Conversy, S., Chatty, S., Anquetil, M., Mertz, C.: Improving users’ comprehension of changes with animation and sound: An empirical assessment. In: Baranauskas, C., Palanque, P., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662, pp. 207–220. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Tabard, A., Mackay, W., Roussel, N., Letondal, C.: Pagelinker: integrating contextual bookmarks within a browser. In: Proc. Human Factors in Computing Systems (CHI 2007), pp. 337–346. ACM Press, New York (2007)CrossRefGoogle Scholar
  26. 26.
    Thomas, B.H., Calder, P.: Animating direct manipulation interfaces. In: Proc. User Interface Software and Technology (UIST 1995), pp. 3–12. ACM Press, New York (1995)Google Scholar
  27. 27.
    Welford, A.T., Norris, A.H., Shock, N.W.: Speed and accuracy of movement and their changes with age. Acta. Psychologica 30, 3–15 (1969)CrossRefGoogle Scholar
  28. 28.
    Zhai, S., Conversy, S., Beaudouin-Lafon, M., Guiard, Y.: Human on-line response to target expansion. In: Proc. Human Factors in Computing Systems (CHI 2003), pp. 177–184. ACM, New York (2003)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Guillaume Faure
    • 1
    • 2
  • Olivier Chapuis
    • 1
    • 2
  • Michel Beaudouin-Lafon
    • 1
    • 2
  1. 1.LRI – Univ. Paris-Sud & CNRSOrsayFrance
  2. 2.INRIAOrsayFrance

Personalised recommendations