A Comparison of Direct and Indirect Multi-touch Input for Large Surfaces

  • Dominik Schmidt
  • Florian Block
  • Hans Gellersen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5726)


Multi-touch input on interactive surfaces has matured as a device for bimanual interaction and invoked widespread research interest. We contribute empirical work on direct versus indirect use multi-touch input, comparing direct input on a tabletop display with an indirect condition where the table is used as input surface to a separate, vertically arranged display surface. Users perform significantly better in the direct condition; however our experiments show that this is primarily the case for pointing with comparatively little difference for dragging tasks. We observe that an indirect input arrangement impacts strongly on the users’ fluidity and comfort of ‘hovering’ movement over the surface, and suggest investigation of techniques that allow users to rest their hands on the surface as default position for interaction.


Multi-touch interfaces surface computing indirect input 


  1. 1.
    Balakrishnan, R.: The Role of Kinesthetic Reference Frames in Two-Handed Input Performance. In: Proc. UIST, pp. 171–178 (1999)Google Scholar
  2. 2.
    Barnert, W.C.: A Comparison of One-Handed and Two-Handed Direct and Indirect Computer Interaction. Technical report, Tufts University (2005)Google Scholar
  3. 3.
    Benko, H., Wilson, A.D., Baudisch, P.: Precise Selection Techniques for Multi-Touch Screens. In: Proc. CHI, pp. 1263–1272 (2006)Google Scholar
  4. 4.
    Buxton, W.: A Three-State Model of Graphical Input. In: Proc. INTERACT, pp. 449–456 (1990)Google Scholar
  5. 5.
    Buxton, W., Myers, B.: A Study in Two-Handed Input. In: Proc. CHI, pp. 321–326 (1986)Google Scholar
  6. 6.
    Cao, X., Wilson, A.D., Balakrishnan, R., Hinckley, K., Hudson, S.E.: ShapeTouch: Leveraging Contact Shape on Interactive Surfaces. In: Proc. TABLETOP (2008)Google Scholar
  7. 7.
    Dietz, P., Leigh, D.: DiamondTouch: A Multi-User Touch Technology. In: Proc. UIST, pp. 219–226 (2001)Google Scholar
  8. 8.
    Forlines, C., Balakrishnan, R.: Evaluating Tactile Feedback and Direct vs. Indirect Stylus Input in Pointing and Crossing Selection Tasks. In: Proc. CHI, pp. 1563–1572 (2008)Google Scholar
  9. 9.
    Forlines, C., Wigdor, D., Shen, C., Balakrishnan, R.: Direct-Touch vs. Mouse Input for Tabletop Displays. In: Proc. CHI, pp. 647–656 (2007)Google Scholar
  10. 10.
    Han, J.Y.: Low-Cost Multi-Touch Sensing Through Frustrated Total Internal Reflection. In: Proc. UIST, pp. 115–118 (2005)Google Scholar
  11. 11.
    Hart, S.G., Stavelan, L.E.: Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Human Mental Workload (1988)Google Scholar
  12. 12.
    Krueger, M.W., Gionfriddo, T., Hinrichsen, K.: VIDEOPLACE - An Artificial Reality. SIGCHI Bull. 16(4), 35–40 (1985)CrossRefGoogle Scholar
  13. 13.
    Kurtenbach, G., Fitzmaurice, G., Baudel, T., Buxton, W.: The Design of a GUI Paradigm Based on Tablets, Two-Hands, and Transparency. In: Proc. CHI, pp. 35–42 (1997)Google Scholar
  14. 14.
    Lee, S.K., Buxton, W., Smith, K.C.: A Multi-Touch Three Dimensional Touch- Sensitive Tablet. SIGCHI Bull. 16(4), 21–25 (1985)CrossRefGoogle Scholar
  15. 15.
    Leganchuk, A., Zhai, S., Buxton, W.: Manual and Cognitive Benefits of Two-Handed Input: An Experimental Study. ACM Trans. Comput.-Hum. Interact. 5(4), 326–359 (1998)CrossRefGoogle Scholar
  16. 16.
    Lewis, J.R.: IBM Computer Usability Satisfaction Questionnaires: Psychometric Evaluation and Instructions for Use. Int. J. Hum.-Comput. Interact. 7(1), 57–78 (1995)CrossRefGoogle Scholar
  17. 17.
    MacKenzie, I.S., Oniszczak, A.: A Comparison of Three Selection Techniques for Touchpads. In: Proc. CHI, pp. 336–343 (1998)Google Scholar
  18. 18.
    MacKenzie, I.S., Sellen, A., Buxton, W.: A Comparison of Input Devices in Elemental Pointing and Dragging Tasks. In: Proc. CHI, pp. 161–166 (1991)Google Scholar
  19. 19.
    Malik, S., Ranjan, A., Balakrishnan, R.: Interacting with Large Displays from a Distance with Vision-Tracked Multi-Finger Gestural Input. In: Proc. UIST, pp. 43–52 (2005)Google Scholar
  20. 20.
    Meyer, S., Cohen, O., Nilsen, E.: Device Comparisons for Goal-Directed Drawing Tasks. In: Proc. CHI, pp. 251–252 (1994)Google Scholar
  21. 21.
    Moscovich, T., Hughes, J.F.: Indirect Mappings of Multi-Touch Input Using One and Two Hands. In: Proc. CHI, pp. 1275–1284 (2008)Google Scholar
  22. 22.
    Scott, S.S., Carpendale, S.: Guest Editors’ Introduction: Interacting with Digital Tabletops. IEEE Computer Graphics and Applications 26(5), 24–27 (2006)CrossRefGoogle Scholar
  23. 23.
    Sears, A., Shneiderman, B.: High Precision Touchscreens: Design Strategies and Comparisons with a Mouse. IJMMS 34, 593–613 (1991)Google Scholar
  24. 24.
    Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., Shen, C.: Lucid Touch: A See-Through Mobile Device. In: Proc. UIST, pp. 269–278 (2007)Google Scholar
  25. 25.
    Wilson, A.D.: Robust Computer Vision-Based Detection of Pinching for One and Two-Handed Gesture Input. In: Proc. UIST, pp. 255–258 (2006)Google Scholar
  26. 26.
    Wu, M., Balakrishnan, R.: Multi-Finger and Whole Hand Gestural Interaction Techniques for Multi-User Tabletop Displays. In: Proc. UIST, pp. 193–202 (2003)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Dominik Schmidt
    • 1
  • Florian Block
    • 1
  • Hans Gellersen
    • 1
  1. 1.Computing DepartmentLancaster UniversityLancasterUK

Personalised recommendations