Distinguishing Difficulty Levels with Non-invasive Brain Activity Measurements

  • Audrey Girouard
  • Erin Treacy Solovey
  • Leanne M. Hirshfield
  • Krysta Chauncey
  • Angelo Sassaroli
  • Sergio Fantini
  • Robert J. K. Jacob
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5726)


Passive brain-computer interfaces are designed to use brain activity as an additional input, allowing the adaptation of the interface in real time according to the user’s mental state. The goal of the present study is to distinguish between different levels of game difficulty using non-invasive brain activity measurement with functional near-infrared spectroscopy (fNIRS). The study is designed to lead to adaptive interfaces that respond to the user’s brain activity in real time. Nine subjects played two levels of the game Pacman while their brain activity was measured using fNIRS. Statistical analysis and machine learning classification results show that we can discriminate well between subjects playing or resting, and distinguish between the two levels of difficulty with some success. In contrast to most previous fNIRS studies which only distinguish brain activity from rest, we attempt to tell apart two levels of brain activity, and our results show potential for using fNIRS in an adaptive game or user interface.


Brain-computer interface human cognition functional near-infrared spectroscopy fNIRS task classification game difficulty level 


  1. 1.
    Cutrell, E., Tan, D.S.: BCI for passive input in HCI. In: Proc. ACM CHI 2008 Conference on Human Factors in Computing Systems Workshop on Brain-Computer Interfaces for HCI and Games (2007)Google Scholar
  2. 2.
    Lee, J.C., Tan, D.S.: Using a Low-Cost Electroencephalograph for Task Classification in HCI Research. In: Proc. UIST 2006 (2006)Google Scholar
  3. 3.
    Coyle, S., Ward, T., Markham, C., McDarby, G.: On the Suitability of Near-Infrared Systems for Next Generation Brain Computer Interfaces. In: Proc. World Congress on Medical Physics and Biomedical Engineering, Sydney, Australia (2003)Google Scholar
  4. 4.
    Sitaram, R., Zhang, H., Guan, C., Thulasidas, M., Hoshi, Y., Ishikawa, A., Shimizu, K., Burbaumer, N.: Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. NeuroImage 34, 1416–1427 (2007)CrossRefGoogle Scholar
  5. 5.
    Hirshfield, L.M., Solovey, E.T., Girouard, A., Kebinger, J., Sassaroli, A., Tong, Y., Fantini, S., Jacob, R.J.K.: Brain Measurement for Usability Testing and Adaptive Interfaces: An Example of Uncovering Syntactic Workload with Functional Near Infrared Spectroscopy. In: Proceedings of CHI 2009 Conference on Human Factors in Computing Systems (2009)Google Scholar
  6. 6.
    Bunce, S., Devaraj, A., Izzetoglu, M., Onaral, B., Pourrezaei, K.: Detecting deception in the brain: a functional near-infrared spectroscopy study of neural correlates of intentional deception. In: Proceedings of the SPIE International Society for Optical Engineering, vol. 5769, pp. 24–32 (2005)Google Scholar
  7. 7.
    Herrmann, M.J., Ehlis, A.C., Fallgatter, A.J.: Prefrontal activation through task requirements of emotional induction measured with NIRS. Biological Psychology 64(3), 255 (2003)CrossRefGoogle Scholar
  8. 8.
    Villringer, A., Chance, B.: Non-Invasive Optical Spectroscopy and Imaging of Human Brain Function. Trends in Neuroscience 20, 435–442 (1997)CrossRefGoogle Scholar
  9. 9.
    Bunce, S.C., Izzetoglu, M., Izzetoglu, K., Onaral, B., Pourrezaei, K.: Functional Near Infrared Spectroscopy: An Emerging Neuroimaging Modality. IEEE Engineering in Medicine and Biology Magazine, Special issue on Clinical Neuroengineering 25(4), 54–62 (2006)CrossRefGoogle Scholar
  10. 10.
    Chen, D., Hart, J., Vertegaal, R.: Towards a physiological model of user interruptability. In: Baranauskas, C., Palanque, P., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4663, pp. 439–451. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Izzetoglu, K., Bunce, S., Onaral, B., Pourrezaei, K., Chance, B.: Functional Optical Brain Imaging Using Near-Infrared During Cognitive Tasks. International Journal of Human-Computer Interaction 17(2), 211–231 (2004)CrossRefGoogle Scholar
  12. 12.
    Nagamitsu, S., Nagano, M., Tamashita, Y., Takashima, S., Matsuishi, T.: Prefrontal cerebral blood volume patterns while playing video games-A near-infrared spectroscopy study. Brain & Development 28, 315–321 (2006)CrossRefGoogle Scholar
  13. 13.
    Matsuda, G., Hiraki, K.: Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: A NIRS study of children. NeuroImage 29(3), 706–711 (2006)CrossRefGoogle Scholar
  14. 14.
    Saito, K., Mukawa, N., Saito, M.: Brain Activity Comparison of Different-Genre Video Game Players. In: Proceedings of ICICIC ’07 International Conference on Innovative Computing Information and Control, pp. 402–406 (2007)Google Scholar
  15. 15.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Results of empirical and theorical research. In: Hancock, P., Meshkati, N. (eds.) Human Mental Workload, Amsterdam, pp. 139–183 (1988)Google Scholar
  16. 16.
    Butti, M., Caffini, M., Merzagora, A.C., Bianchi, A.M., Baselli, G., Onaral, B., Secchi, P., Cerutti, S.: Non-invasive neuroimaging: Generalized Linear Models for interpreting functional Near Infrared Spectroscopy signals. In: Caffini, M. (ed.) Proceedings of CNE ’07 Conference on Neural Engineering, pp. 461–464 (2007)Google Scholar
  17. 17.
    Nishimura, E., Stautzenberger, J.P., Robinson, W., Downs, T.H., Downs, J.H.: A new approach to functional near-infrared technology. IEEE Engineering in Medicine and Biology Magazine 26(4), 25–29 (2007)CrossRefGoogle Scholar
  18. 18.
    Matsuda, G., Hiraki, K.: Prefrontal Cortex Deactivation During Video Game Play. In: Shiratori, R., Arai, K., Kato, F. (eds.) Gaming, Simulations, and Society: Research Scope and Perspective, pp. 101–109 (2005)Google Scholar
  19. 19.
    Field, A.P., Hole, G.: How to design and report experiments. Sage publications Ltd., Thousand Oaks (2003)Google Scholar
  20. 20.
    Dietterich, T.G.: Machine learning for sequential data: A review. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 15–30. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Nijholt, A., Tan, D., Allison, B., Milan, J.d.R., Graimann, B.: Brain-computer interfaces for hci and games. In: CHI 2008 extended abstracts on Human factors in computing systems. ACM, Florence (2008)Google Scholar
  22. 22.
    Gevins, A., Smith, M.: Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical Issues in Ergonomics Science 4, 113–131 (2003)CrossRefGoogle Scholar
  23. 23.
    Allison, B.Z., Polich, J.: Workload assessment of computer gaming using a single-stimulus event-related potential paradigm. Biological Psychology 77(3), 277–283 (2008)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Audrey Girouard
    • 1
  • Erin Treacy Solovey
    • 1
  • Leanne M. Hirshfield
    • 1
  • Krysta Chauncey
    • 1
  • Angelo Sassaroli
    • 2
  • Sergio Fantini
    • 2
  • Robert J. K. Jacob
    • 1
  1. 1.Computer Science DepartmentUSA
  2. 2.Biomedical Engineering Department Tufts UniversityMedfordUSA

Personalised recommendations