Looking Ahead: A Comparison of Page Preview Techniques for Goal-Directed Web Navigation

  • Aaron Genest
  • Carl Gutwin
  • Adrian Reetz
  • Regan Mandryk
  • David Pinelle
  • Andre Doucette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5726)


On the World Wide Web, page previews augment hyperlinks to provide extra information about each link’s destination. These previews can reduce navigation time and errors in goal-directed navigation tasks when the information provided by the text and context of links is inadequate. A number of different types of page previews have been proposed, and some are already in use; however, little is known about which preview types will consistently help users make good navigation decisions. Our study compares six preview techniques (title, URL, subject category, page genre, genre symbol, and thumbnail), two delivery mechanisms (inline and popup), and two page load times (fast and slow). We found that previews showing the genre of the page (e.g., whether the page is an information page or a search page) yielded significantly faster performance than other preview techniques, and participants also preferred the genre-based previews. Our study is the first to compare the performance of a wide range of page previews in a naturalistic, non-search environment, and provides empirical data that can improve support for goal-directed navigation.


Goal-directed browsing information scent page previews 


  1. 1.
    Berkun, S.: The Explorer Bar: Unifying and Improving Web Navigation. In: Proc. Interact, pp. 156–162. IOS Press, Amsterdam (1999)Google Scholar
  2. 2.
    Catledge, L.D., Pitkow, J.E.: Characterizing Browsing Strategies in the World-Wide Web. Computer Networks and ISDN Systems 27, 1065–1073 (1995)CrossRefGoogle Scholar
  3. 3.
    Chen, H., Fan, H., Chau, M., Zeng, D.: MetaSpider: Meta-Searching and Categorization on the Web. J. Am. Soc. Information Science and Technology 52(13), 1134–1147 (2001)CrossRefGoogle Scholar
  4. 4.
    Chi, E.H., Pirolli, P., Chen, K., Pitkow, J.: Using information scent to model user information needs and actions and the Web. In: Proc. CHI, pp. 490–497. ACM Press, New York (2001)Google Scholar
  5. 5.
    Cockburn, A., Greenberg, S., McKenzie, B., Jasonsmith, M., Kaasten, S.: WebView: A Graphical Aid for Revisiting Web Pages. In: Proc. OZCHI (1999)Google Scholar
  6. 6.
    Drori, O.: Display of Search Results in Google-based Yahoo! vs. LCC&K Interfaces: A Comparison Study. In: Proc. Informing Science, pp. 309–320 (2003)Google Scholar
  7. 7.
    Drori, O.: How to Display Search Results in Digital Libraries-User Study. In: Proc. Workshop on New Developments in Digital Libraries, pp. 13–28 (2003)Google Scholar
  8. 8.
    Dumais, S., Chen, H.: Hierarchical Classification of Web Content. In: Proc. SIGIR, pp. 256–263. ACM Press, New York (2000)CrossRefGoogle Scholar
  9. 9.
    Faaborg, A., Lieberman, H.: A Goal-Oriented Web Browser. In: Proc. CHI 2006, pp. 751–760 (2006)Google Scholar
  10. 10.
    Harper, S., Goble, C., Stevens, R.: A Pilot Study to Examine the Mobility Problems of Visually Impaired Users Traveling the Web. Computers and the Physically Handicapped 68, 10–19 (2000)CrossRefGoogle Scholar
  11. 11.
    Huck, S., Cormier, W.: Reading Statistics and Research. HarperCollins, New York (1996)Google Scholar
  12. 12.
    Hurst, M.: The Page Paradigm (2004), (accessed 8/15/2008)
  13. 13.
    Kaasten, S., Greenberg, S., Edwards, C.: How People Recognize Previously Seen Web Pages from Titles, URLs and Thumbnails. In: Proc. HCI, pp. 247–265 (2002)Google Scholar
  14. 14.
    Kellar, M., Watters, C., Shepherd, M.: The Impact of task on the Usage of Web Browser Navigation Mechanisms. In: Proc. Graphics Interface, pp. 235–242 (2006)Google Scholar
  15. 15.
    Lee, C.H., Kan, M.Y., Lai, S.: Stylistic and Lexical Co-training for Web Block Classification. In: Proc. Web Information and Data Management, pp. 136–143 (2004)Google Scholar
  16. 16.
    Matsuda, K., Fukushima, T.: Task-oriented World Wide Web Retrieval by Document Type Classification. In: Proc. Information and Knowledge Management, pp. 109–113 (1999)Google Scholar
  17. 17.
    Miura, M., Shizuki, B., Tanaka, J.: inlineLink: Inline Expansion Link Methods in Hypertext Browsing. In: Proc. Internet Computing, pp. 653–659 (2001)Google Scholar
  18. 18.
    Nielsen, N.: Alertbox: Information foraging: Why Google makes people leave your site faster (2003), (accessed 8/31/08)
  19. 19.
    Obendorf, H., Weinreich, H., Herder, E., Mayer, M.: Web Page Revisitation Revisited: Implications of a Long-term Click-stream Study of Browser Usage. In: CHI, pp. 597–606 (2007)Google Scholar
  20. 20.
    Pirolli, P., Card, S.K.: Information foraging. Psychological Review 106(4), 643–675 (1999)CrossRefGoogle Scholar
  21. 21.
    Plaisant, C., Shneiderman, B., Doan, K., Bruns, T.: Interface and Data Architecture for Query Preview in Networked Information Systems. Transactions on Information Systems 17(3), 320–341 (1999)CrossRefGoogle Scholar
  22. 22.
    Shih, L.K., Karger, D.R.: Using URLs and Table Layout for Web Classification Tasks. In: Proc. World Wide Web 2004, pp. 193–202 (2004)Google Scholar
  23. 23.
    Tauscher, L., Greenberg, S.: Revisitation Patterns in World Wide Web Navigation. In: CHI, pp. 399–406 (1997)Google Scholar
  24. 24.
    Weinreich, H., Lamersdorf, W.: Concepts for Improved Visualization of Web Link Attributes. Computer Networks 33, 403–416 (2000)CrossRefGoogle Scholar
  25. 25.
    Withrow, J.: Do your links stink? Techniques for good Web information scent. Bulletin of the American Society for Information Science and Technology 28(5) (2002)Google Scholar
  26. 26.
    Woodruff, A., Faulring, A., Rosenholtz, R., Morrsion, J., Pirolli, P.: Using Thumbnails to Search the Web. In: CHI, pp. 198–205 (2001)Google Scholar
  27. 27.
    Zamir, O., Etzioni, O.: Grouper: A Dynamic Clustering Interface to Web Search Results. Computer Networks 31(11-16), 1361–1374 (1999)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Aaron Genest
    • 1
  • Carl Gutwin
    • 1
  • Adrian Reetz
    • 1
  • Regan Mandryk
    • 1
  • David Pinelle
    • 2
  • Andre Doucette
    • 1
  1. 1.Department of Computer ScienceUniversity of SaskatchewanSaskatoonCanada
  2. 2.National Research CouncilFrederictonCanada

Personalised recommendations