Advertisement

What’s Next? A Visual Editor for Correcting Reading Order

  • Daisuke Sato
  • Masatomo Kobayashi
  • Hironobu Takagi
  • Chieko Asakawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5726)

Abstract

The reading order, i.e. the serialized form, of the webpage should be a meaningful order for alternative representations such as the audible forms needed for visually impaired users. However, the serialized form rarely receives attention because it is visually elusive for authors using the existing WISIWYG authoring environments. Therefore we propose a new visualization technique called “reading flow” that visualizes the order of the serialized form with variable granularity by using a visible path extending through the elements in the content. This allows the authors to instantly evaluate the ordering by the visual pattern of the path. Our approach also allows them to interactively and intuitively reorganize the order of the serialized form. The results of two comparative experiments show that our reading flow greatly increases the ability of the authors to understand and organize the ordering compared to the existing techniques.

Keywords

Reading flow reading order Web accessibility ARIA flowto 

References

  1. 1.
    Web content accessibility guidelines (WCAG) 1.0. W3C Recommendation May 5 (1999), http://www.w3.org/TR/WCAG10/
  2. 2.
    Section 508 of the rehabilitation act, http://www.section508.gov/
  3. 3.
    Japanese Standard Association. JIS X 8341-3:2004 guideline for older persons and persons with disabilities -information and communications equipment, software and services-part3 Web contentGoogle Scholar
  4. 4.
    Council of the European Union. eEurope 2002 -an information society for all -action plan (2002)Google Scholar
  5. 5.
    Takagi, H., Asakawa, C., Fukuda, K., Maeda, J.: Site-wide annotation: reconstructing existing pages to be accessible. In: ASSETS 2002: Proceedings of the Fifth international ACM conference on Assistive technologies, pp. 81–88 (2002)Google Scholar
  6. 6.
    Harper, S., Bechhofer, S.: Sadie: Structural semantics for accessibility and device independence. ACM Trans. Comput.-Hum. Interact. 14(2), 10 (2007)CrossRefGoogle Scholar
  7. 7.
    Miyashita, H., Sato, D., Takagi, H., Asakawa, C.: Aibrowser for multimedia: introducing multimedia content accessibility for visually impaired users. In: ASSETS 2007: Proceedings of the 9th international ACM SIGACCESS conference on Computers and accessibility, pp. 91–98 (2007)Google Scholar
  8. 8.
    Kouroupetroglou, C., Salampasis, M., Manitsaris, A.: A semantic-Web-based framework for developing applications to improve accessibility in the www. In: W4A: Proceedings of the 2006 international cross-disciplinary workshop on Web accessibility (W4A), pp. 98–108 (2006)Google Scholar
  9. 9.
    Ramakrishnan, I.V., Stent, A., Yang, G.: HearSay: enabling audio browsing on hypertext content. In: WWW 2004: Proceedings of the 13th international conference on World Wide Web, pp. 80–89 (2004)Google Scholar
  10. 10.
    WAVE 4.0 accessibility tool, http://wave.webaim.org/
  11. 11.
    Kasday, L.R.: A tool to evaluate universal Web accessibility. In: CUU 2000: Proceedings on the 2000 conference on Universal Usability, pp. 161–162 (2000)Google Scholar
  12. 12.
    Takagi, H., Asakawa, C., Fukuda, K., Maeda, J.: Accessibility designer: visualizing usability for the blind. In: ASSETS 2004: Proceedings of the 6th international ACM SIGACCESS conference on Computers and accessibility, pp. 177–184 (2004)Google Scholar
  13. 13.
    Meunier, J.-L.: Optimized xy-cut for determining a page reading order. In: ICDAR 2005: Proceedings of the Eighth International Conference on Document Analysis and Recognition, pp. 347–351 (2005)Google Scholar
  14. 14.
    Malerba, D., Ceci, M., Berardi, M.: Machine Learning for Reading Order Detection in Document Image Understanding. Machine Learning in Document Analysis and Recognition (2008)Google Scholar
  15. 15.
    Yacoub, S., Saxena, V., Sami, S.N.: Perfectdoc: A ground truthing environment for complex documents. In: ICDAR 2005: Proceedings of the Eighth International Conference on Document Analysis and Recognition, pp. 452–457 (2005)Google Scholar
  16. 16.
    Yanikoglu, B.A., Vincent, L.: Pink panther: a complete environment for ground-truthing and benchmarking document page segmentation. Pattern Recognition 31(9), 1191–1204 (1998)CrossRefGoogle Scholar
  17. 17.
    Kanungo, T., Lee, C.H., Czorapinski, J., Bella, I.: TRUEVIZ: a groundtruth/metadata editing and visualizing toolkit for OCR. In: Proc. SPIE Document Recognition and Retrieval VIII, vol. 4307, pp. 1–12Google Scholar
  18. 18.
    Kawanaka, S., Borodin, Y., Bigham, J.P., Lunn, D., Takagi, H., Asakawa, C.: Accessibility commons: a metadata infrastructure for Web accessibility. In: ASSETS 2008: Proceedings of the 10th international ACM SIGACCESS conference on Computers and accessibility, pp. 153–160 (2008)Google Scholar
  19. 19.
    Accessible rich internet applications (WAI-ARIA) version 1.0. W3C Working Draft, August 6 (2008), http://www.w3.org/TR/wai-aria
  20. 20.
    Takagi, H., Kawanaka, S., Kobayashi, M., Itoh, T., Asakawa, C.: Social accessibility: achieving accessibility through collaborative metadata authoring. In: ASSETS 2008: Proceedings of the 10th international ACM SIGACCESS conference on Computers and accessibility, pp. 193–200 (2008)Google Scholar
  21. 21.
    Bigham, J.P., Ladner, R.E.: Accessmonkey: a collaborative scripting framework for Web users and developers. In: W4A 2007: Proceedings of the 2007 international cross-disciplinary conference on Web accessibility (W4A), pp. 25–34 (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Daisuke Sato
    • 1
  • Masatomo Kobayashi
    • 1
  • Hironobu Takagi
    • 1
  • Chieko Asakawa
    • 1
  1. 1.Tokyo Research LaboratoryIBM JapanYamato CityJapan

Personalised recommendations