MapReduce-Based Pattern Finding Algorithm Applied in Motif Detection for Prescription Compatibility Network

  • Yang Liu
  • Xiaohong Jiang
  • Huajun Chen
  • Jun Ma
  • Xiangyu Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5737)


Network motifs are basic building blocks in complex networks. Motif detection has recently attracted much attention as a topic to uncover structural design principles of complex networks. Pattern finding is the most computationally expensive step in the process of motif detection. In this paper, we design a pattern finding algorithm based on Google MapReduce to improve the efficiency. Performance evaluation shows our algorithm can facilitates the detection of larger motifs in large size networks and has good scalability. We apply it in the prescription network and find some commonly used prescription network motifs that provide the possibility to further discover the law of prescription compatibility.


complex network motif detection pattern finding MapReduce prescription compatibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs: Simple Building Block of Complex Networks. Science 5594, 824–827 (2002)CrossRefGoogle Scholar
  2. 2.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)MATHGoogle Scholar
  3. 3.
    Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: ACM OSDI (2004)Google Scholar
  4. 4.
    Kuramochi, M., Karypis, G.: Finding Frequent Patterns in a Large Sparse Graph. In: Data Mining and Knowledge Discovery, vol. 5810, pp. 243–271. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: 2002 IEEE International Conference on Data Mining, 2002. ICDM 2002. Proceedings, pp. 721–724. IEEE Press, Maebashi City (2002)Google Scholar
  6. 6.
    Inokucbi, A., Wasbio, T., Motoda, H.: Complete mining of frequent patterns from graphs: Mining graph data. Machine Learning 50(3), 321–354 (2003)CrossRefGoogle Scholar
  7. 7.
    Hong, M., Zhou, H., Wang, W., Shi, B.: An efficient algorithm of frequent connected subgraph extraction. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS, vol. 2637, pp. 40–51. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Yan, X., Hart, J.: CloseGraph: Mining closed frequent patterns. In: The 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 286–295. ACM, Washington (2003)Google Scholar
  9. 9.
    Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraph in the presence of isomorphism. In: 2003 International Conference on Data Mining (ICDM), Melbourne, pp. 549–552. IEEE, Florida (2003)Google Scholar
  10. 10.
    Gudes, E., Shimony, S.E., Vanetik, N.: Discovering frequent graph patterns using disjoint paths. IEEE Transactions on Knowledge and Data Engineering 18(11), 1441–1456 (2006)CrossRefMATHGoogle Scholar
  11. 11.
    Yoshida, K., Motoda, H., Indurkhya, N.: Graph-based induction as a unified learning framework. Journal of Applied Intelligence 4, 297–328 (1994)CrossRefGoogle Scholar
  12. 12.
    Cook, J., Holder, L.: Substructure discovery using minimum description length and background knowledge. J. Artificial Intelligence Research, 231–255 (1994)Google Scholar
  13. 13.
    Schreiber, F., Schwöbbermeyer, H.: Frequent Concepts and Pattern Detection for the Analysis of Motifs in Networks. In: Priami, C., Merelli, E., Gonzalez, P., Omicini, A. (eds.) Transactions on Computational Systems Biology III. LNCS (LNBI), vol. 3737, pp. 89–104. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Chen, J., Hsu, W., Lee, M.-L., Ng, S.-K.: Nemofinder: dissecting genome-wide protein-protein interactions with meso-scale network motifs. In: KDD, pp. 106–115 (2006)Google Scholar
  15. 15.
    Chen, C., Yan, X., Zhu, F., Han, J.: gApprox: Mining frequent approximate patterns from a massive network. In: Perner, P. (ed.) ICDM 2007. LNCS (LNAI), vol. 4597, pp. 445–450. Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Chu, C., Kim, S.K., Lin, Y., Yu, Y.Y., Bradski, G.: Map-Reduce for Machine Learning on Multicore. NIPS (2006)Google Scholar
  17. 17.
    Chang, E., Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z., Cui, H.: PSVM: Parallelizing Support Vector Machines on Distributed Computers. NIPS (2007)Google Scholar
  18. 18.
    Wu, Z., Zhou, X., Liu, B., Chen, J.: Text Mining for Finding Functional Community of Related Genes using TCM Knowledge. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 459–470. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Ying, T., Guo-fu, Y., Gui-bing, L., Jian-ying, C.: Mining Compatibility Rules from Irregular Chinese Traditional Medicine Database by Apriori Agorithm. Journal of Southwest Jiaotong University (English Edition) 15, 288–292 (2007)Google Scholar
  20. 20.
    Xuezhong, Z., Zhaohui, W.: Distributional Character Clustering for Chinese Text Categorization. In: Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 575–584. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Xiao, H., Liang, X., Lu, P., Chan, C.: New method for analysis of Chinese herbal complex prescription and its application. Chinese Science Bulletin 44, 1164–1172 (1999)CrossRefGoogle Scholar
  22. 22.
    Feng, Y., Wu, Z., Zhou, X., Zhou, Z., Fan, W.: Knowledge discovery in traditional Chinese medicine: State of the art and perspectives. Artificial Intelligence in Medicine. 38(3), 219–236 (2006)CrossRefGoogle Scholar
  23. 23.
    Chang, Y.-H., Lin, H.-J., Li, W.-C.: Clinical evaluation of the traditional Chinese prescription Chi-Ju-Di-Huang-Wan for Dry Eye. Phytotherapy Research 19(4), 349–354 (2005)CrossRefGoogle Scholar
  24. 24.
    Kuramochi, M., Karypis, G.: An efficient algorithm for discovering frequent subgraphs. Technical Report 02-026, Department of Computer Science, University of Minnesota (2002)Google Scholar
  25. 25.
    Fujing, D.: Prescription: for the Specialty of Chinese Traditional Medicine. Shanghai Publishing House of Science and Technology Press, Shanghai (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yang Liu
    • 1
  • Xiaohong Jiang
    • 1
  • Huajun Chen
    • 1
  • Jun Ma
    • 1
  • Xiangyu Zhang
    • 1
  1. 1.College of Computer ScienceZhejiang UniversityHangzhouChina

Personalised recommendations