Advertisement

MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler

  • Ye Huang
  • Amos Brocco
  • Michele Courant
  • Beat Hirsbrunner
  • Pierre Kuonen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5737)

Abstract

This paper presents a simulator for of a decentralized modular grid scheduler named MaGate. MaGate’s design emphasizes scheduler interoperability by providing intelligent scheduling serving the grid community as a whole. Each MaGate scheduler instance is able to deal with dynamic scheduling conditions, with continuously arriving grid jobs. Received jobs are either allocated on local resources, or delegated to other MaGates for remote execution. The proposed MaGate simulator is based on GridSim toolkit and Alea simulator, and abstracts the features and behaviors of complex fundamental grid elements, such as grid jobs, grid resources, and grid users. Simulation of scheduling tasks is supported by a grid network overlay simulator executing distributed ant-based swarm intelligence algorithms to provide services such as group communication and resource discovery. For evaluation, a comparison of behaviors of different collaborative policies among a community of MaGates is provided. Results support the use of the proposed approach as a functional ready grid scheduler simulator.

Keywords

Grid Scheduling SmartGRID MaGate Simulator Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International Journal of High Performance Computing Applications 15(3), 200 (2001)CrossRefGoogle Scholar
  2. 2.
    Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Personal Communications, [see also IEEE Wireless Communications] 8(4), 10–17 (2001)Google Scholar
  3. 3.
    Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S., Xu, Z.: Peer-to-Peer Computing. HP Laboratories Palo Alto (March 2002)Google Scholar
  4. 4.
    Schwiegelshohn, U., Yahyapour, R.: Attributes for communication between scheduling instances. Global Grid Forum, GGF (December 2001)Google Scholar
  5. 5.
    Buyya, R., Murshed, M.: GridSim: a toolkit for the modeling and simulation of distributed resource management and scheduling for Grid computing. Concurrency and Computation: Practice and Experience 14(13-15), 1175–1220 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Klusacek, D., Matyska, L., Rudova, H.: Alea-Grid Scheduling Simulation Environment. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1029–1038. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Huang, Y., Brocco, A., Kuonen, P., Courant, M., Hirsbrunner, B.: SmartGRID: A Fully Decentralized Grid Scheduling Framework Supported by Swarm Intelligence. In: Seventh International Conference on Grid and Cooperative Computing, 2008. GCC 2008, China, pp. 160–168. IEEE Computer Society, Los Alamitos (2008)CrossRefGoogle Scholar
  8. 8.
    Brocco, A., Frapolli, F., Hirsbrunner, B.: Bounded diameter overlay construction: A self organized approach. In: IEEE Swarm Intelligence Symposium, SIS 2009. IEEE, Los Alamitos (2009)Google Scholar
  9. 9.
    Ripeanu, M., Foster, I.: Peer-to-peer architecture case study: Gnutella network. In: First Conference on Peer-to-peer Computing, Sweden, pp. 99–100. IEEE Computer Press, Los Alamitos (2001)Google Scholar
  10. 10.
    Jelasity, M., van Steen, M.: Large-scale newscast computing on the internet. Technical Report IR-503, Vrije Universiteit Amsterdam, Department of Computer Science, Amsterdam, The Netherlands (October 2002)Google Scholar
  11. 11.
    Brocco, A., Hirsbrunner, B., Courant, M.: A modular middleware for high-level dynamic network management. In: Proceedings of the 1st workshop on Middleware-application interaction: in conjunction with Euro-Sys 2007, pp. 21–24. ACM Press, New York (2007)CrossRefGoogle Scholar
  12. 12.
    GridWorkloadsArchive: http://gwa.ewi.tudelft.nl/pmwiki/
  13. 13.
    Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Grid scheduling simulations with GSSIM. In: 3rd Workshop on Scheduling and Resource Management for Parallel and Distributed Systems, Proceedings of the 13th International Conference on Parallel and Distributed Systems, Hsinchu, Taiwan (2007)Google Scholar
  14. 14.
    Henderson, T., Lacage, M., Riley, G.: Network simulations with the ns-3 simulator. Demo paper at ACM SIGCOMM 2008 (2008)Google Scholar
  15. 15.
    Mathieu Lacage, T.R.H.: Yet another network simulator. In: WNS2 2006: Proceeding from the 2006 workshop on ns-2: the IP network simulator, p. 12. ACM, New York (2006)CrossRefGoogle Scholar
  16. 16.
    Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator, http://peersim.sf.net
  17. 17.
    García, P., Pairot, C., Mondéjar, R., Pujol, J., Tejedor, H., Rallo, R.: Planetsim: A new overlay network simulation framework. Software Engineering and Middleware, 123–136 (2005)Google Scholar
  18. 18.
    Tonellotto, N., Wieder, P., Yahyapour, R.: A proposal for a generic grid scheduling architecture. In: Integrated Research in Grid Computing Workshop, Greece, pp. 337–346. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Goodale, T., Jha, S., Kaiser, H., Kielmann, T., Kleijer, P., von Laszewski, G., Lee, C., Merzky, A., Rajic, H., Shalf, J.: SAGA: A Simple API for Grid Applications. High-level application programming on the Grid. Computational Methods in Science and Technology 12(1), 7–20 (2006)CrossRefGoogle Scholar
  20. 20.
    Troger, P., Rajic, H., Haas, A., Domagalski, P.: Standardization of an API for Distributed Resource Management Systems. In: CCGRID 2007: Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid, pp. 619–626. IEEE Computer Society, Washington (2007)Google Scholar
  21. 21.
    Ernemann, C., Hamscher, V., Yahyapour, R.: Benefits of global grid computing for job scheduling. In: Fifth IEEE/ACM International Workshop on Grid Computing, Pittsburgh, USA, pp. 374–379. IEEE Press, Los Alamitos (2004)CrossRefGoogle Scholar
  22. 22.
    Ernemann, C., Hamscher, V., Schwiegelshohn, U., Yahyapour, R., Streit, A.: On Advantages of Grid Computing for Parallel Job Scheduling. In: 2nd IEEE International Symposium on Cluster Computing and the Grid (CC-GRID 2002), Berlin, Germany, pp. 39–46. IEEE Press, Los Alamitos (2002)CrossRefGoogle Scholar
  23. 23.
    Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-Agreement). Technical report, Open Grid Forum, USA (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ye Huang
    • 1
  • Amos Brocco
    • 1
  • Michele Courant
    • 1
  • Beat Hirsbrunner
    • 1
  • Pierre Kuonen
    • 1
  1. 1.Department of Informatics, University of Fribourg, Switzerland, Department of Information and Communication Technologies, University of Applied Sciences Western Switzerland (Fribourg)Switzerland

Personalised recommendations