Reconstructing Optical Flow Fields by Motion Inpainting
Abstract
An edge-sensitive variational approach for the restoration of optical flow fields is presented. Real world optical flow fields are frequently corrupted by noise, reflection artifacts or missing local information. Still, applications may require dense motion fields. In this paper, we pick up image inpainting methodology to restore motion fields, which have been extracted from image sequences based on a statistical hypothesis test on neighboring flow vectors. A motion field inpainting model is presented, which takes into account additional information from the image sequence to improve the reconstruction result. The underlying functional directly combines motion and image information and allows to control the impact of image edges on the motion field reconstruction. In fact, in case of jumps of the motion field, where the jump set coincides with an edge set of the underlying image intensity, an anisotropic TV-type functional acts as a prior in the inpainting model. We compare the resulting image guided motion inpainting algorithm to diffusion and standard TV inpainting methods.
Keywords
Descent Direction Motion Field Error Concealment Image Inpainting Total Variation MinimizationPreview
Unable to display preview. Download preview PDF.
References
- 1.Bruhn, A., Weickert, J.: In: A Confidence Measure for Variational Optic Flow Methods, pp. 283–298. Springer, Heidelberg (2006)Google Scholar
- 2.Kondermann, C., Kondermann, D., Jähne, B., Garbe, C.S.: An adaptive confidence measure for optical flows based on linear subspace projections. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 132–141. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 3.Kondermann, C., Mester, R., Garbe, C.: A statistical confidence measure for optical flows. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 290–301. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 4.Masnou, S., Morel, J.: Level lines based disocclusion. In: Proceedings of the ICIP 1998, vol. 3, pp. 259–263 (1998)Google Scholar
- 5.Chan, T.F., Shen, J.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62, 1019–1043 (2001)MathSciNetzbMATHGoogle Scholar
- 6.Chan, T.F., Shen, J.: Non-texture inpainting by curvature-driven diffusions. J. Visual Comm. Image Rep. 12, 436–449 (2001)CrossRefGoogle Scholar
- 7.Telea, A.: An image inpainting technique based on the fast marching method. Journal of graphics tools 9(1), 25–36 (2003)Google Scholar
- 8.Bornemann, F., März, T.: Fast image inpainting based on coherence transport. Journal of Mathematical Imaging and Vision 28(3), 259–278 (2007)MathSciNetCrossRefGoogle Scholar
- 9.Bertalmio, M., Bertozzi, A., Sapiro, G.: Navier-stokes, fluid dynamics, and image and video inpainting. In: IEEE Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 355–362 (2001)Google Scholar
- 10.Chan, T., Shen, J.: Mathematical models for local non-texture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)CrossRefzbMATHGoogle Scholar
- 11.Nitzberg, M., Shiota, T., Mumford, D.: Filtering, Segmentation and Depth. LNCS, vol. 662. Springer, Heidelberg (1993)CrossRefzbMATHGoogle Scholar
- 12.Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Transactions on Image Processing 10(8), 1200–1211 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image reconstruction. Interfaces and Free Boundaries 5, 63–81 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Chan, T.F., Shen, J., Zhou, H.M.: Total variation wavelet inpainting. Journal of Mathematical Imaging and Vision 25(1), 107–125 (2006)MathSciNetCrossRefGoogle Scholar
- 15.Patwardhan, K.A., Sapiro, G., Bertalmio, M.: Video inpainting of occluding and occluded objects. IMA Preprint Series 2016 (January 2005)Google Scholar
- 16.Matsushita, Y., Ofek, E., Weina, G., Tang, X., Shum, H.: Full-frame video stabilization with motion inpainting. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(7), 1150–1163 (2006)CrossRefGoogle Scholar
- 17.Chen, L., Chan, S., Shum, H.: A joint motion-image inpainting method for error concealment in video coding. In: IEEE International Conference on Image Processing, ICIP (2006)Google Scholar
- 18.Kondermann, C., Kondermann, D., Garbe, C.: Postprocessing of optical flows via surface measures and motion inpainting. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 355–364. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 19.Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000)zbMATHGoogle Scholar
- 20.Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
- 21.Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 565–593 (1986)CrossRefGoogle Scholar
- 22.Alvarez, L., Monreal, L.J.E., Lefebure, M., Perez, J.S.: A pde model for computing the optical flow. In: Proc. XVI Congreso de Ecuaciones Diferenciales Aplicaciones, Universidad de Las Palmas de Gran Canaria, September 1999, pp. 1349–1356 (1999)Google Scholar
- 23.Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
- 24.Braess, D.: Finite Elemente, 2nd edn. Springer, Heidelberg (1997); Theorie, schnelle Löser und Anwendungen in der ElastizitätstheorieCrossRefzbMATHGoogle Scholar
- 25.Schaback, R., Werner, H.: Numerische Mathematik, 4th edn. Springer, Berlin (1992)CrossRefGoogle Scholar
- 26.Kosmol, P.: Methoden zur numerischen Behandlung nichtlinearer Gleichungen und Optimierungsaufgaben. 2nd edn. Teubner, Stuttgart (1993)Google Scholar
- 27.Sundaramoorthi, G., Yezzi, A., Mennucci, A.: Sobolev active contours. International Journal of Computer Vision 73(3), 345–366 (2007)CrossRefzbMATHGoogle Scholar
- 28.Chan, T., Shen, J.: The role of the bv image model in image restoration. AMS Contemporary Mathematics (2002)Google Scholar
- 29.Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1-2), 89–97 (2004)MathSciNetGoogle Scholar
- 30.Baker, S., Roth, S., Scharstein, D., Black, M., Lewis, J., Szeliski, R.: A database and evaluation methodology for optical flow. In: Proceedings of the International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar