The Basic Principles of Metric Indexing

  • Magnus Lie Hetland
Part of the Studies in Computational Intelligence book series (SCI, volume 242)

Summary

This chapter describes several methods of similarity search, based on metric indexing, in terms of their common, underlying principles. Several approaches to creating lower bounds using the metric axioms are discussed, such as pivoting and compact partitioning with metric ball regions and generalized hyperplanes. Finally, pointers are given for further exploration of the subject, including non-metric, approximate, and parallel methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Santos Filho, R.F., Traina, A., Traina Jr., C., Faloutsos, C.: Similarity search without tears: the OMNI-family of all-purpose access methods. In: Proceedings of the 17th International Conference on Data Engineering, ICDE, pp. 623–630 (2001)Google Scholar
  2. 2.
    Uribe, R., Navarro, G., Barrientos, R.J., Marín, M.: An Index Data Structure for Searching in Metric Space Databases. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 611–617. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM Transactions on Database Systems, TODS 28(4), 517–580 (2003)CrossRefGoogle Scholar
  4. 4.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, San Francisco (2006)MATHGoogle Scholar
  5. 5.
    : Zhou, X., Wang, G., Yu, J.X., Yu, G.: M + -tree: A new dynamical multidimensional index for metric spaces. In: Zhou, X., Schewe, K.-D. (eds.) Proceedings of the 14th Australasian Database Conference, ADC. Conferences in Research and Practice in Information Technology, vol. 17 (2003)Google Scholar
  6. 6.
    Zhou, X., Wang, G., Zhou, X., Yu, G.: BM + -tree: A hyperplane-based index method for high-dimensional metric spaces. In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 398–409. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Faloutsos, C., Lin, K.-I.: FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia. In: Carey, M.J., Schneider, D.A. (eds.) Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose, California, pp. 163–174 (1995)Google Scholar
  8. 8.
    Micó, M.L., Oncina, J.: A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing time and memory requirements. Pattern Recognition Letters 15(1), 9–17 (1994)CrossRefGoogle Scholar
  9. 9.
    Zezula, P., Savino, P., Amato, G., Rabitti, F.: Approximate similarity retrieval with M-Trees. The VLDB Journal 7(4), 275–293 (1998)CrossRefGoogle Scholar
  10. 10.
    Wang, J.T.L., Wang, X., Shasha, D., Zhang, K.: Metricmap: an embedding technique for processing distance-based queries in metric spaces. IEEE Transactions on Systems, Man and Cybernetics, Part B 35(5), 973–987 (2005)CrossRefGoogle Scholar
  11. 11.
    Houle, M.E., Sakuma, J.: Fast approximate similarity search in extremely high-dimensional data sets. In: Proceedings of the 21st IEEE International Conference on Data Engineering, ICDE (2005)Google Scholar
  12. 12.
    Chávez, E., Figueroa, K., Navarro, G.: Proximity Searching in High Dimensional Spaces with a Proximity Preserving Order. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 405–414. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Amato, G.: Approximate similarity search in metric spaces. PhD thesis, Computer Science Department – University of Dortmund, August-Schmidt-Str. 12, 44221, Dortmund, Germany (2002)Google Scholar
  14. 14.
    Ciaccia, P., Patella, M.: PAC nearest neighbor queries: Approximate and controlled search in high-dimensional and metric spaces. In: IEEE Computer Society (eds.) Proceedings of the 16th International Conference on Data Engineering, ICDE, pp. 244–255 (2000)Google Scholar
  15. 15.
    Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region proximity in metric spaces and its use for approximate similarity search. ACM Transactions on Information Systems, TOIS 21(2), 192–227 (2003)CrossRefGoogle Scholar
  16. 16.
    Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics. In: Proceedings of the 34th annual ACM symposium on Theory of computing, pp. 741–750. ACM Press, New York (2002)Google Scholar
  17. 17.
    Skopal, T.: On fast non-metric similarity search by metric access methods. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 718–736. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Skopal, T.: Unified framework for exact and approximate search in dissimilarity spaces. ACM Transactions on Database Systems, TODS 32(4) (2007)Google Scholar
  19. 19.
    Dohnal, V., Gennaro, C., Zezula, P.: Similarity join in metric spaces using eD-index. In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 484–493. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Bustos, B., Skopal, T.: Dynamic similarity search in multi-metric spaces. In: Proceedings of the 8th ACM international workshop on Multimedia information retrieval. ACM Press, New York (2006)Google Scholar
  21. 21.
    Fagin, R.: Combining fuzzy nformation from multiple systems. In: Proceedings of the 15th ACM Symposium on Principles of Database Systems, PODS, pp. 216–226. ACM Press, New York (1996)Google Scholar
  22. 22.
    Fagin, R.: Fuzzy queries in multimedia database systems. In: Proceedings of the 17th ACM Symposium on Principles of Database Systems, PODS, pp. 1–10. ACM Press, New York (1998)Google Scholar
  23. 23.
    Ciaccia, P., Montesi, D., Penzo, W., Trombetta, A.: Imprecision and user preferences in multimedia queries: A generic algebraic approach. In: Schewe, K.-D., Thalheim, B. (eds.) FoIKS 2000. LNCS, vol. 1762, pp. 50–71. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Ciaccia, P., Patella, M., Zezula, P.: Processing complex similarity queries with distance-based access methods. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 9–23. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Ciaccia, P., Patella, M.: Searching in metric spaces with user-defined and approximate distances. ACM Transactions on Database Systems (TODS) 27(4), 398–437 (2002)CrossRefGoogle Scholar
  26. 26.
    Hjaltason, G.R., Samet, H.: Incremental similarity search in multimedia databases. Technical Report CS-TR-4199, Computer Science Department, University of Maryland, College Park (2000)Google Scholar
  27. 27.
    Batko, M., Gennaro, C., Savino, P., Zezula, P.: Scalable similarity search in metric spaces. In: Proceedings of the DELOS Workshop on Digital Library Architectures, pp. 213–224 (2004)Google Scholar
  28. 28.
    Falchi, F., Gennaro, C., Zezula, P.: Nearest neighbor search in metric spaces through content-addressable networks. Information Processing & Management 43(3), 665–683 (2007)CrossRefGoogle Scholar
  29. 29.
    Marín, M., Uribe, R., Barrientos, R.J.: Searching and updating metric space databases using the parallel EGNAT. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp. 229–236. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Alpkocak, A., Danisman, T., Ulker, T.: A parallel similarity search in high dimensional metric space using M-tree. In: Grigoras, D., Nicolau, A., Toursel, B., Folliot, B. (eds.) IWCC 2001. LNCS, vol. 2326, p. 166. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  31. 31.
    Zezula, P., Savino, P., Rabitti, F., Amato, G., Ciaccia, P.: Processing M-Trees with parallel resources. In: Proceedings of the 8th International Workshop on Research Issues in Data Engineering, RIDE, pp. 147–154. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  32. 32.
    Novak, D., Zezula, P.: M-Chord: a scalable distributed similarity search structure. In: Proceedings of the 1st International Conference on Scalable Information Systems (2006)Google Scholar
  33. 33.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)CrossRefGoogle Scholar
  34. 34.
    Traina Jr., C., Traina, J.M., Faloutsos, C.: Distance exponent: a new concept for selectivity estimation in metric trees. In: Proceedings of the International Conference on Data Engineering, ICDE (2000)Google Scholar
  35. 35.
    Belussi, A., Faloutsos, C.: Estimating the selectivity of spatial queries using the correlation fractal dimension. In: Proceedings of the International Conference on Very Large Databases, VLDB (1995)Google Scholar
  36. 36.
    Traina Jr., C., Traina, A.J.M., Seeger, B., Faloutsos, C.: Slim-Trees: High Performance Metric Trees Minimizing Overlap between Nodes. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 51–65. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  37. 37.
    Traina Jr., C., Traina, A., Santos Filho, R.F., Faloutsos, C.: How to improve the pruning ability of dynamic metric access methods. In: Proceedings of the eleventh international conference on Information and knowledge management, pp. 219–226 (2002)Google Scholar
  38. 38.
    Moret, B.M.E.: Towards a discipline of experimental algorithmics. In: Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, vol. 59, pp. 197–214. Americal Mathematical Society (2002)Google Scholar
  39. 39.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Springer, Heidelberg (2006)MATHGoogle Scholar
  40. 40.
    Pestov, V., Stojmirović, A.: Indexing schemes for similarity search: an illustrated paradigm. Fundamenta Informaticae 70(4), 367–385 (2006)MATHMathSciNetGoogle Scholar
  41. 41.
    Chávez, E., Navarro, G.: Metric databases. In: Rivero, L.C., Doorn, J.H., Ferraggine, V.E. (eds.) Encyclopedia of Database Technologies and Applications, pp. 367–372. Idea Group, USA (2006)Google Scholar
  42. 42.
    Skopal, T.: Metric Indexing in Information Retrieval. PhD thesis, Technical University of Ostrava (2004)Google Scholar
  43. 43.
    Deza, E., Deza, M.M.: Dictionary of Distances. Elsevier, Amsterdam (2006)Google Scholar
  44. 44.
    Kalantari, I., McDonald, G.: A data structure and an algorithm for the nearest point problem. IEEE Transactions on Software Engineering 9(5), 631–634 (1983)CrossRefGoogle Scholar
  45. 45.
    Aronovich, L., Spiegler, I.: Efficient similarity search in metric databases using the CM-tree. Data & Knowledge Engineering (2007)Google Scholar
  46. 46.
    Brisaboa, N., Pedreira, O., Seco, D., Solar, R., Uribe, R.: Clustering-based similarity search in metric spaces with sparse spatial centers. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 186–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  47. 47.
    Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  48. 48.
    Hetland, M.L.: A survey of recent methods for efficient retrieval of similar time sequences. In: Last, M., Kandel, A., Bunke, H. (eds.) Data Mining in Time Series Databases, vol. 2, pp. 23–42. World Scientific, Singapore (2004)Google Scholar
  49. 49.
    Zezula, P., Ciaccia, P., Rabitti, F.: M-tree: A dynamic index for similarity queries in multimedia databases. Technical Report 7, HERMES ESPRIT LTR Project (1996)Google Scholar
  50. 50.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: Proceedings of the 23rd International Conference on Very Large Data Bases, VLDB, pp. 426–435. Morgan Kaufmann, San Francisco (1997)Google Scholar
  51. 51.
    Ciaccia, P., Patella, M., Zezula, P.: A cost model for similarity queries in metric spaces. In: Proceedings of the 17th Symposium on Principles of Database Systems, pp. 59–68 (1998)Google Scholar
  52. 52.
    Bozkaya, T., Özsoyoglu, M.: Distance-based indexing for high-dimensional metric spaces. In: Proceedings of the, ACM SIGMOD international conference on Management of data, pp. 357–368. ACM Press, New York (1997)CrossRefGoogle Scholar
  53. 53.
    Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: Separable splits of metric data sets. In: Proceedings of the Nono Convegno Nazionale Sistemi Evoluti per Basi di Dati, SEBD (June 2001)Google Scholar
  54. 54.
    Gennaro, C., Savino, P., Zezula, P.: Similarity search in metric databases through hashing. In: Proceedings of the 2001 ACM workshops on Multimedia: multimedia information retrieval (2001)Google Scholar
  55. 55.
    Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: Distance searching index for metric data sets. Multimedia Tools and Applications 21(1), 9–33 (2003)CrossRefGoogle Scholar
  56. 56.
    Dohnal, V.: An access structure for similarity search in metric spaces. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 133–143. Springer, Heidelberg (2004)Google Scholar
  57. 57.
    Dohnal, V.: Indexing Structures for Searching in Metric Spaces. PhD thesis, Masaryk University, Faculty of Informatics (2004)Google Scholar
  58. 58.
    Semmes, S.: What is a metric space? (September 2007) arXiv:0709.1676v1 [math.MG]Google Scholar
  59. 59.
    Jain, P.K., Ahmad, K.: Metric Spaces, 2nd edn. Alpha Science International Ltd. Pangbourne (2004)Google Scholar
  60. 60.
    Arentz, W.A., Hetland, M.L., Olstad, B.: Methods for retrieving musical information based on rhythm and pitch correlations. Journal of New Music Research 34(2) (2005)Google Scholar
  61. 61.
    Jungnickel, D.: Graphs, Networks and Algorithms, 2nd edn. Springer, Heidelberg (2005)MATHGoogle Scholar
  62. 62.
    Rico-Juan, J.R., Micó, L.: Comparison of AESA and LAESA search algorithms using string and tree-edit-distances. Pattern Recognition Letters 24(9-10), 1417–1426 (2002)CrossRefGoogle Scholar
  63. 63.
    Chávez, E., Marroquín, J.L., Baeza-Yates, R.: Spaghettis: An array based algorithm for similarity queries in metric spaces. In: Proceedings of the String Processing and Information Retrieval Symposium & International Workshop on Groupware (SPIRE), pp. 38–46. IEEE Computer Society Press, Los Alamitos (1999)CrossRefGoogle Scholar
  64. 64.
    Bustos, B., Navarro, G., Chávez, E.: Pivot selection techniques for proximity searching in metric spaces. Pattern Recognition Letters 24(14), 2357–2366 (2003)MATHCrossRefGoogle Scholar
  65. 65.
    Pedreira, O., Brisaboa, N.R.: Spatial Selection of Sparse Pivots for Similarity Search in Metric Spaces. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 434–445. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  66. 66.
    Marin, M., Gil-Costa, V., Uribe, R.: Hybrid index for metric space databases. In: Proceedings of the International Conference on Computational Science (2008)Google Scholar
  67. 67.
    Ruiz, E.V.: An algorithm for finding nearest neighbours in (approximately) constant average time. Pattern Recognition Letters 4(3), 145–157 (1986)CrossRefGoogle Scholar
  68. 68.
    Vidal, E.: New formulation and improvements of the nearest-neighbour approximating and eliminating search algorithm (AESA). Pattern Recognition Letters 15(1), 1–7 (1994)CrossRefMathSciNetGoogle Scholar
  69. 69.
    Figueroa, K., Chávez, E., Navarro, G., Paredes, R.: On the least cost for proximity searching in metric spaces. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 279–290. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  70. 70.
    Vilar, J.M.: Reducing the overhead of the AESA metric-space nearest neighbour searching algorithm. Information Processing Letters 56(5), 265–271 (1995)MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Micó, M.L., Oncina, J., Carrasco, R.C.: A fast branch & bound nearest neighbour classifier in metric spaces. Pattern Recognition Letters 17(7), 731–739 (1996)CrossRefGoogle Scholar
  72. 72.
    Tokoro, K., Yamaguchi, K., Masuda, S.: Improvements of TLAESA nearest neighbour search algorithm and extension to approximation search. In: Proceedings of the 29th Australasian Computer Science Conference, pp. 77–83. Australian Computer Society, Inc (2006)Google Scholar
  73. 73.
    Bozkaya, T., Özsoyoglu, M.: Indexing large metric spaces for similarity search queries. ACM Transactions on Database Systems, TODS 24(3) (1999)Google Scholar
  74. 74.
    Skopal, T.: Pivoting M-tree: A metric access method for efficient similarity search. In: Snášel, V., Pokorn’y, J., Richta, K. (eds.) Proceedings of the Annual International Workshop on DAtabases, TExts, Specifications and Objects (DATESO), Desna, Czech Republic, Technical University of Aachen (RWTH), April 2004. CEUR Workshop Proceedings, vol. 98 (2004)Google Scholar
  75. 75.
    Uhlmann, J.K.: Metric trees. Applied Mathematics Letters 4(5), 61–62 (1991)MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, Philadelphia, PA, USA, pp. 311–321. Society for Industrial and Applied MathematicsGoogle Scholar
  77. 77.
    Chiueh, T.-c.: Content-based image indexing. In: Proceedings of the Twentieth International Conference on Very Large Databases, VLDB, Santiago, Chile, pp. 582–593 (1994)Google Scholar
  78. 78.
    Yianilos, P.N.: Excluded middle vantage point forests for nearest neighbor search. Technical report, NEC Research Institute (1999)Google Scholar
  79. 79.
    chee Fu, A.W., shuen Chan, P.M., Cheung, Y.-L., Moon, Y.S.: Dynamic vp-tree indexing for n-nearest neighbor search given pair-wise distances. The VLDB Journal 9(2), 154–173 (2000)CrossRefGoogle Scholar
  80. 80.
    Chávez, E., Navarro, G.: An effective clustering algorithm to index high dimensional metric spaces. In: Proceedings of the 6th International Symposium on String Processing and Information Retrieval SPIRE, pp. 75–86. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  81. 81.
    Chávez, E., Navarro, G.: A compact space decomposition for effective metric indexing. Pattern Recognition Letters 26(9), 1363–1376 (2005)CrossRefGoogle Scholar
  82. 82.
    Fredriksson, K.: Exploiting distance coherence to speed up range queries in metric indexes. Information Processing Letters 95(1), 287–292 (2005)CrossRefMathSciNetGoogle Scholar
  83. 83.
    Fredriksson, K.: Engineering efficient metric indexes. Pattern Recognition Letters (2006)Google Scholar
  84. 84.
    Vieira, M.R., Traina Jr., C., Takada Chino, F.J., Traina, A.J.M.: DBM-tree: a dynamic metric access method sensitive to local density data. In: Proceedings of the 19th Brazilian Symposium on Databases (SBBD). UnB (2004)Google Scholar
  85. 85.
    Vieira, M.R., Traina Jr., C., Takada Chino, F.J., Machado Traina, A.J.: DBM-tree: trading height-balancing for performance in metric access methods. Journal of the Brazilian Computer Society 11(3), 20–39 (2006)Google Scholar
  86. 86.
    Frank, K.H.A.: Dehne and Hartmut Noltemeier. Voronoi trees and clustering problems. Information Systems 12(2), 171–175 (1987)Google Scholar
  87. 87.
    Noltemeier, H.: Voronoi trees and applications. In: Proceedings of the International Workshop on Discrete Algorithms and Complexity, pp. 69–74 (1989)Google Scholar
  88. 88.
    Noltemeier, H., Verbarg, K., Zirkelbach, C.: Monotonous Bisector* trees: a tool for efficient partitioning of complex scenes of geometric objects. In: Monien, B., Ottmann, T. (eds.) Data Structures and Efficient Algorithms. LNCS, vol. 594, pp. 186–203. Springer, Heidelberg (1992)Google Scholar
  89. 89.
    Noltemeier, H., Verbarg, K., Zirkelbach, C.: A data structure for representing and efficient querying large scenes of geometric objects: MB* trees. In: Farin, G.E., Hagen, H., Noltemeier, H., Knödel, W. (eds.) Geometric Modelling. Computing Supplement, vol. 8. Springer, Heidelberg (1992)Google Scholar
  90. 90.
    Liu, B., Wang, Z., Yang, X., Wang, W., Shi, B.-L.: A Bottom-Up Distance-Based Index Tree for Metric Space. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 442–449. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  91. 91.
    Ciaccia, P., Patella, M., Rabitti, F., Zezula, P.: Indexing metric spaces with M-tree. In: Cristiani, M., Tanca, L. (eds.) Atti del Quinto Convegno Nazionale su Sistemi Evoluti per Basi di Dati (SEBD 1997), Verona, Italy, June 1997, pp. 67–86 (1997)Google Scholar
  92. 92.
    Skopal, T., Pokorný, J., Krátký, M., Snášel, V.: Revisiting M-tree building principles. In: Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003. LNCS, vol. 2798, pp. 148–162. Springer, Heidelberg (2003)Google Scholar
  93. 93.
    Cantone, D., Ferro, A., Pulvirenti, A., Recupero, D.R., Shasha, D.: Antipole tree indexing to support range search and k-nearest neighbor search in metric spaces. IEEE Transactions on Knowledge and Data Engineering 17(4), 535–550 (2005)CrossRefGoogle Scholar
  94. 94.
    Skopal, T., Hoksza, D.: Improving the performance of M-tree family by nearest-neighbor graphs. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690, pp. 172–188. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  95. 95.
    Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-Trees: Theory and Applications. In: Advanced Information and Knowledge Processing. Springer, Heidelberg (2006)Google Scholar
  96. 96.
    Yu, C., Ooi, B.C., Tan, K.-L., Jagadish, H.V.: Indexing the distance: An efficient method to KNN processing. In: Proceedings of the 27th International Conference on Very Large Data Bases, VLDB, San Francisco, CA, USA, pp. 421–430. Morgan Kaufmann Publishers Inc, San Francisco (2001)Google Scholar
  97. 97.
    Ishikawa, M., Chen, H., Furuse, K., Yu, J.X., Ohbo, N.: MB+Tree: A Dynamically Updatable Metric Index for Similarity Search. In: Lu, H., Zhou, A. (eds.) WAIM 2000. LNCS, vol. 1846, pp. 356–373. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  98. 98.
    Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees. Information Processing Letters 40(4), 175–179 (1991)MATHCrossRefGoogle Scholar
  99. 99.
    Brin, S.: Near neighbor search in large metric spaces. In: Dayal, U., Gray, P.M.D., Nishio, S. (eds.) Proceedings of 21th International Conference on Very Large Data Bases, VLDB, pp. 574–584. Morgan Kaufman, San Francisco (1995)Google Scholar
  100. 100.
    Navarro, G.: Searching in metric spaces by spatial approximation. In: Proceedings of the 6th International Symposium on String Processing and Information Retrieval, SPIRE, pp. 141–148. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  101. 101.
    Navarro, G.: Searching in metric spaces by spatial approximation. The VLDB Journal 11(1), 28–46 (2002)CrossRefGoogle Scholar
  102. 102.
    Navarro, G., Reyes, N.: Dynamic spatial approximation trees. In: Proceedings of the XXI Conference of the Chilean Computer Science Society, SCCC, pp. 213–222 (2001)Google Scholar
  103. 103.
    Navarro, G., Reyes, N.: Fully dynamic spatial approximation trees. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 254–270. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  104. 104.
    Navarro, G., Reyes, N.: Improved deletions in dynamic spatial approximation trees. In: Proceedings of the XXIII International Conference of the Chilean Computer Science Society, SCCC (2003)Google Scholar
  105. 105.
    Arroyuelo, D., Navarro, G., Reyes, N.: Fully dynamic and memory-adaptative spatial approximation trees. In: Proceedings of the Argentinian Congress in Computer Science, CACIC, pp. 1503–1513 (2003)Google Scholar
  106. 106.
    Arroyuelo, D., Muñoz, F., Navarro, G., Reyes, N.: Memory-adaptative dynamic spatial approximation trees. In: Proceedings of the 10th International Symposium on String Processing and Information Retrieval, SPIRE (2003)Google Scholar
  107. 107.
    Chavez, E., Herrera, N., Reyes, N.: Spatial approximation + sequential scan = efficient metric indexing. In: Proceedings of the XXIV International Conference of the Chilean Computer Science Society, SCCC (2004)Google Scholar
  108. 108.
    Schroeder, M.: Fractals, Chaos, Power Laws, 6th edn. W. H. Freeman and Company, New York (1991)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Magnus Lie Hetland
    • 1
  1. 1.Department of Computer and Information ScienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations