Abstract

Bipolarity is an important feature of spatial information, involved in the expressions of preferences and constraints about spatial positioning, or in pairs of “opposite” spatial relations such as left and right. Imprecision should also be taken into account, and fuzzy sets is then an appropriate formalism. In this paper, we propose to handle such information based on mathematical morphology operators, extended to the case of bipolar fuzzy sets. The potential of this formalism for spatial reasoning is illustrated on a simple example in brain imaging.

Keywords

bipolar spatial information fuzzy sets spatial relations bipolar fuzzy dilation and erosion spatial reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloch, I.: Fuzzy Spatial Relationships for Image Processing and Interpretation: A Review. Image and Vision Computing 23(2), 89–110 (2005)CrossRefGoogle Scholar
  2. 2.
    Dubois, D., Kaci, S., Prade, H.: Bipolarity in Reasoning and Decision, an Introduction. In: International Conference on Information Processing and Management of Uncertainty, IPMU 2004, Perugia, Italy, pp. 959–966 (2004)Google Scholar
  3. 3.
    Bloch, I.: Dilation and Erosion of Spatial Bipolar Fuzzy Sets. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 385–393. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bloch, I.: Mathematical Morphology on Bipolar Fuzzy Sets. In: International Symposium on Mathematical Morphology (ISMM 2007), Rio de Janeiro, Brazil, vol. 2, pp. 3–4 (2007)Google Scholar
  5. 5.
    Cornelis, C., Kerre, E.: Inclusion Measures in Intuitionistic Fuzzy Sets. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 345–356. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bloch, I., Maître, H.: Fuzzy Mathematical Morphologies: A Comparative Study. Pattern Recognition 28(9), 1341–1387 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Deschrijver, G., Cornelis, C., Kerre, E.: On the Representation of Intuitionistic Fuzzy t-Norms and t-Conorms. IEEE Transactions on Fuzzy Systems 12(1), 45–61 (2004)CrossRefMATHGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New-York (1980)MATHGoogle Scholar
  9. 9.
    Nachtegael, M., Sussner, P., Mélange, T., Kerre, E.: Some Aspects of Interval-Valued and Intuitionistic Fuzzy Mathematical Morphology. In: IPCV 2008 (2008)Google Scholar
  10. 10.
    Bloch, I.: Duality vs Adjunction and General Form for Fuzzy Mathematical Morphology. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS, vol. 3849, pp. 354–361. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Bloch, I.: Duality vs. Adjunction for Fuzzy Mathematical Morphology and General Form of Fuzzy Erosions and Dilations. Fuzzy Sets and Systems 160, 1858–1867 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)MATHGoogle Scholar
  13. 13.
    Bloch, I., Heijmans, H., Ronse, C.: Mathematical Morphology. In: Aiello, M., Pratt-Hartman, I., van Benthem, J. (eds.) Handbook of Spatial Logics, ch. 13, pp. 857–947. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Bloch, I.: A Contribution to the Representation and Manipulation of Fuzzy Bipolar Spatial Information: Geometry and Morphology. In: Workshop on Soft Methods in Statistical and Fuzzy Spatial Information, Toulouse, France, September 2008, pp. 7–25 (2008)Google Scholar
  15. 15.
    Bloch, I.: Geometry of Spatial Bipolar Fuzzy Sets based on Bipolar Fuzzy Numbers and Mathematical Morphology. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS (LNAI), vol. 5571, pp. 237–245. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Waxman, S.G.: Correlative Neuroanatomy, 24th edn. McGraw-Hill, New York (2000)Google Scholar
  17. 17.
    Hudelot, C., Atif, J., Bloch, I.: Fuzzy Spatial Relation Ontology for Image Interpretation. Fuzzy Sets and Systems 159, 1929–1951 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Isabelle Bloch
    • 1
  1. 1.Télécom ParisTech (ENST), CNRS UMR 5141 LTCIParisFrance

Personalised recommendations