Abstract

We study some basic morphological operators acting on the lattice of all subgraphs of a (non-weighted) graph \(\mathbb{G}\). To this end, we consider two dual adjunctions between the edge set and the vertex set of \(\mathbb{G}\). This allows us (i) to recover the classical notion of a dilation/erosion of a subset of the vertices of \(\mathbb{G}\) and (ii) to extend it to subgraphs of \(\mathbb{G}\). Afterward, we propose several new erosions, dilations, granulometries and alternate filters acting (i) on the subsets of the edge and vertex set of \(\mathbb{G}\) and (ii) on the subgraphs of \(\mathbb{G}\).

References

  1. 1.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle. IEEE Trans. Pattern Analysis and Machine Intelligence 31(8), 1362–1374 (2009)CrossRefGoogle Scholar
  2. 2.
    Couprie, M., Bertrand, G.: New characterizations of simple points in 2d, 3d, and 4d discrete spaces. IEEE Trans. Pattern Analysis and Machine Intelligence 31(4), 637–648 (2009)CrossRefGoogle Scholar
  3. 3.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Thinnings, shortest-path forests and topological watersheds. IEEE Trans. Pattern Analysis and Machine Intelligence (to appear, 2009) Google Scholar
  4. 4.
    Cousty, J., Najman, L., Serra, J.: Raising in watershed lattices. In: International Conference on Image Processing, pp. 2196–2199. IEEE, Los Alamitos (2008)Google Scholar
  5. 5.
    Najman, L.: Ultrametric watersheds. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 181–192. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Vincent, L.: Graphs and mathematical morphology. Sig. Proc. 16, 365–388 (1989)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Heijmans, H., Vincent, L.: Graph morphology in image analysis. In: Dougherty, E. (ed.) Mathematical Morphology in Image Processing, pp. 171–203. Marcel-Dekker, New York (1992)Google Scholar
  8. 8.
    Meyer, F., Angulo, J.: Micro-viscous morphological operators. In: Mathematical Morphology and its Application to Signal and Image Processing (ISMM 2007), pp. 165–176 (2007)Google Scholar
  9. 9.
    Meyer, F., Lerallut, R.: Morphological operators for flooding, leveling and filtering images using graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 158–167. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Cousty, J., Najman, L., Serra, J.: Morphological operators in graph spaces. In preparation, see also Technical Report IGM 2009-08 (2009), http://www-igm.univ-mlv.fr/LabInfo/rapportsInternes/2009/08.pdf
  11. 11.
    Ronse, C., Serra, J.: Fondements algébriques de la morphologie. In: Morphologie mathématique 1 approche déterministe, Hermes, pp. 49–96 (2008)Google Scholar
  12. 12.
    Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. on Image Processing 4(8), 1153–1160 (1995)CrossRefGoogle Scholar
  13. 13.
    Ronse, C.: Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. Journal of Mathematical Imaging and Vision 8(1), 41–58 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Braga-Neto, U., Goutsias, J.: Connectivity on complete lattices: new results. Computer Vision and Image Understanding 85(1), 22–53 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Ouzounis, G.K., Wilkinson, M.H.: Mask-based second-generation connectivity and attribute filters. IEEE Trans. Pattern Analysis and Machine Intelligence 29(6), 990–1004 (2007)CrossRefGoogle Scholar
  16. 16.
    Loménie, N., Stamon, G.: Morphological mesh filtering and α-objects. Pattern Recognition Letters 29(10), 1571–1579 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jean Cousty
    • 1
  • Laurent Najman
    • 1
  • Jean Serra
    • 1
  1. 1.Laboratoire d’Informatique Gaspard-Monge, Équipe A3SIUniversité Paris-EstESIEEFrance

Personalised recommendations